(CodeGPT AIコミュニティで話題となっている新たなコード生成ツールにご紹介します)

(CodeGPT AIコミュニティで話題の新たなツールが登場!おしゃれと美容の分野で役立つコード生成ツールをご紹介します)

新しいAIコード生成ツールの中で、CodeGPTはプログラマーの間で好評を博しています。CodeGPTはVisual Studio Codeのアドオンであり、GPT-3言語モデルを活用してコードを生成し、言語を翻訳し、さまざまなタイプのコンテンツを書き、質問に答えることができます。

CodeGPTは現在開発中ですが、開発者がコードを作成する方法を変える可能性があります。CodeGPTが自然言語を理解する能力は、他のAIコード生成ツールとは異なる特徴の一つです。つまり、形式的なプログラミング用語を使用せずに、開発者は自然言語で書かれた説明に基づいてCodeGPTにコードの構築を指示することができます。特に新しい言語やフレームワークを学ぶ開発者にとって、このような時間の節約は大きなものになることがあります。

CodeGPTのもう一つの利点は、効率的でより独自なコードを生成できる能力です。CodeGPTは実際のプロジェクトの大量のコードコーパスでトレーニングされているため、各プログラミング言語の標準と規範に精通しています。

最後に、CodeGPTには頻繁に更新と改良が行われます。CodeGPTチームはソフトウェアを新しい機能で常に更新し、発生する問題を修正します。これにより、CodeGPTは常にコード生成、言語翻訳、コンテンツ作成、質問に答えるなどのさまざまなタスクで改善され続けています。

CodeGPTの応用範囲:

  • CodeGPTは不完全または曖昧なコードスニペットを自動的に完成させることができます。特に大規模で複雑なコードベースの扱いにおいて、エンジニアにとって時間の節約になります。
  • CodeGPTで関数、クラス、さらにはプログラム全体を生成することができます。これは、基本的なコードを素早く生成したり、新しいコンセプトを開発したりするのに役立ちます。
  • CodeGPTの支援により、コードの再構築が容易になり、より独自で書きやすいコード構造をプログラマーに推奨します。また、一般的なセキュリティの欠陥を見つけて修正するのにも役立ちます。
  • コードのデバッグに関しては、CodeGPTはミスの可能性のある理由を提案し、修正方法に関するアドバイスを提供する便利なツールです。
  • バグの発見:CodeGPTは、開発者が潜在的な問題を特定し、コードの正確性をチェックするためのテストを提供することで、コードの欠陥を明らかにするのに役立ちます。
  • 適切に使用すると、CodeGPTはプログラマがコードを生成する速度、効率、品質を向上させる強力なツールです。

CodeGPTを入手できる場所:https://marketplace.visualstudio.com/items?itemName=DanielSanVoAGI.dscodegpt&ssr=false

Mistralはこちらからダウンロードして使用することができます:https://docs.codegpt.co/docs/tutorial-ai-providers/ollama

この記事の元の投稿は、Meet CodeGPT: A New Code Generation Tool Making Waves in the AI Communityです。出典:MarkTechPost

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

トゥギャザーアイは、ShortおよびLongコンテキストの評価で最高のオープンソーストランスフォーマーに対抗する、StripedHyena-7Bという代替人工知能モデルを紹介します

AIと共に、シーケンスモデリングアーキテクチャへの大きな貢献を果たし、StripedHyenaモデルを導入しました。従来のトランス...

データサイエンス

「ディープラーニングの謎を解明する:CIFAR-10データセットを用いたCNNアーキテクチャの秘密の解明」

「人工知能の絶えず進化する世界において、畳み込みニューラルネットワーク(CNN)は革命的なテクノロジーとして登場し、コン...

機械学習

AIエージェント:月のジェネレーティブAIトレンド

わずか30分で、実世界の知識を持つLLMを使用して、ノーコードAIエージェントアプリケーションを構築する方法を学びます

AI研究

UCLAとCMUの研究者が、優れた中程度範囲の天気予報のためのスキルと信頼性のあるスケーラブルなトランスフォーマーニューラルネットワーク「ストーマー」を紹介しました

現在、科学と社会が直面している主な問題の一つは天気予報です。正確な天気予報は、自然災害や極端な天候事象に対処し、回復...

AI研究

「自己教師あり学習とトランスフォーマー? - DINO論文の解説」

「一部の人々は、Transformerのアーキテクチャを愛し、それをコンピュータビジョンの領域に歓迎しています他の人々は、新しい...

AIニュース

OpenAIはGPT-3.5 Turboのファインチューニングによるカスタムパワーを解放します

人工知能の絶え間なく進化する世界で、OpenAIは革命的なアップデートを解放しました。それは、私たちが機械とどのようにイン...