「ClimSimに出会ってください:機械学習と気候研究の物理学を結びつける画期的なマルチスケール気候シミュレーションデータセット」

「クライムシム」を体験しよう:機械学習と気候研究の最先端データセットを活用するマルチスケール気候シミュレーション

数値物理シミュレーション予測は、気候変動政策の指針となる情報の主要な源です。最も高性能なスーパーコンピュータの限界に挑戦しているにもかかわらず、既存の気候シミュレータは、雲と豪雨の物理現象をシミュレートする必要があります。地球システムの複雑さが、研究チームがこれらのシミュレーションで使用できる空間分解能を厳しく制限しています。”パラメータ化”とは、気候シミュレーションの時間的および地理的分解能よりも低いスケールで起こる物理現象の経験的な数学的表現です。残念ながら、これらのパラメータ化に使用される仮定は、将来の予測される気候を悪化させる可能性のある誤りにつながることがしばしばあります。

気候シミュレータの解像度よりも小さなスケールで発生する複雑な非線形サブ解像度物理プロセスをシミュレートするための魅力的な方法は、機械学習(ML)です。その応用の興味深い側面は、現在のものよりもより正確で低コストな気候シミュレーションをもたらすということです。現在の気候シミュレーションの最小解像度は通常80-200 km、または平均的な米国の郡のサイズです。しかし、効果的に雲の形成を説明するには100 m以上の解像度が必要であり、計算能力は桁違いに増加する必要があります。

クラシカルなコンピューティングの制約を克服するために機械学習(ML)を使用することはまだ有望なオプションです。生じる大規模な流体運動を支配する方程式を解くための従来の数値手法と、小規模な物理学のマクロスケール効果のMLエミュレータを組み合わせたハイブリッドML気候シミュレータは、主観的な仮定に頼らず、高解像度で短期間のシミュレーションによって生成されたデータから直接学習します。本質的には、これは回帰問題です:大規模な解像度の入力が与えられると、気候シミュレーション内のMLパラメータ化エミュレータは、未解決の小規模な(サブ解像度)物理学から生じる大規模な出力(風や湿度、温度の変化など)を返します。

最近いくつかの概念実証が開発されましたが、ハイブリッドML気候シミュレーションはまだ実際に展開される必要があります。MLコミュニティが関心を持つのを妨げている主な障害の1つは、十分なトレーニングデータを取得することです。サブ解像度の物理学の振る舞いを制御するすべてのマクロスケール要因は、このデータに含まれている必要があります。高い解像度のシミュレーションからトレーニングデータを取得する方法は非常に高コストであり、ホスト気候シミュレーションと組み合わせると問題が発生する可能性があります。マルチスケール気候シミュレーション技術を使用してトレーニングデータを生成するのは有望なアプローチです。もっとも重要なことは、これらはホスト気候シミュレータの地球規模のダイナミクスと模倣された高解像度の物理学との明確なインターフェースを提供します。これにより、後続のハイブリッド結合シミュレーションが扱いやすくなり、アクセス可能になります。利用可能なデータセットの不足や、変数の選択時にドメインの専門知識が必要なこと、運用シミュレーションのコードの複雑さと利用可能なデータセットの不足が、マルチスケールアプローチの実用的な応用に制約を与えています。

ハイブリッド-ML気候シミュレーションに使用するために、20以上の突出した研究機関の研究者からなる研究チームがClimSimを提案します。これは気象放射線、空気の嵐、雲、乱流、降雨の機械学習シミュレータのための最大かつ最も物理的に完全なデータセットです。ClimSimは、マルチスケール物理気候シミュレーションのすべての入出力を含む包括的なセットです。このベンチマークデータセットは、クラウドや重度の降雨物理パラメータ化と他のサブ解像度現象との相互作用をモデル化する堅牢なフレームワークの構築のための堅固な基盤を提供します。ホスト粗解像度気候シミュレータ内でのオンラインカップリングを容易にすることで、これらのフレームワークは長期予測に使用される気候シミュレータの正確性を向上させ、全体としてよりよく機能するように支援します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more