「SHAPを用いた解釈可能なAI」

Interpretable AI using SHAP

Nik Korbaによる写真(Unsplash)

解釈可能なAIの必要性

私たちはAIの時代に生きています。AIは私たちの周りにあり、メディアはそれが私たちの世界に与え続けている影響を忘れさせてはくれません。AIとその応用の人気が高まるにつれて、ますます多くの人々が機械学習が日常生活に果たす役割に気付いています。それは、レコメンデーションシステムから予測、生成型AIまで様々なものです。

一般の人々のAIに対する感度が高まる中、データサイエンティストやエンジニアが適切な場合にモデルがなぜ特定の予測や意思決定を行うのかを解釈できることはますます重要になってきています。通常、優れたモデルは問題を受けて、将来に起こり得ることを説明することができます。しかし、これは実際の問題の一部にしか対応していません:

「モデルは予測がどのように行われたのか(なぜ)も説明しなければならない。なぜなら、正しい予測だけでは元の問題は部分的にしか解決しないからです。」- Christoph Molnar, 解釈可能な機械学習

上記の引用は、モデルが予測を行うために使用するプロセスに対処する必要性を強調しています。モデルの説明のための多くの手法がありますが、ここではその効果とシンプルさからますます人気を集めている手法に焦点を当てます。

SHAP (Shapley Additive exPlanations)

SHAPはShapley値の応用です。Shapley値は協力ゲーム理論からの確立された概念であり、各プレイヤーがゲームの結果に対して個別にどの程度貢献したかを測定します。例えば、4人の友人が協力してゲームをする場合、Shapley値は各友人がゲームの結果にどの程度貢献したかを計算するために使用されます。

解釈可能な機械学習において、SHAPはモデル内の個々の特徴をゲームのプレイヤーとし、ゲームの結果をモデルの予測として扱います。したがって、SHAPはモデル内の各特徴が個々の予測にどのように影響を与えるかを測定します。

詳細

Shapley値は、一部のプレイヤーが欠けている状態や一部のプレイヤーが存在する状態でゲームをシミュレーションすることで計算されます。さまざまなプレイヤーグループが存在する状態でゲームをシミュレーションし、結果を計算することによって、モデルは…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「Prolificの機械学習エンジニア兼AIコンサルタント、ノラ・ペトロヴァ – インタビューシリーズ」

『Nora Petrovaは、Prolificの機械学習エンジニア兼AIコンサルタントですProlificは2014年に設立され、既にGoogle、スタンフ...

人工知能

「パクストンAIの共同創業者兼CEO、タングイ・シャウ - インタビューシリーズ」

タングイ・ショウは、Paxton AIの共同創設者兼CEOであり、法的研究と起草の負担を軽減するためにGenerative AIを使用するプラ...

人工知能

「コマンドバーの創設者兼CEO、ジェームズ・エバンスによるインタビューシリーズ」

ジェームズ・エバンズは、CommandBarの創設者兼CEOであり、製品、マーケティング、顧客チームを支援するために設計されたAIパ...

人工知能

「Ntropyの共同創設者兼CEO、ナレ・ヴァルダニアンについて - インタビューシリーズ」

「Ntropyの共同創設者兼CEOであるナレ・ヴァルダニアンは、超人的な精度で100ミリ秒以下で金融取引を解析することを可能にす...

人工知能

『ジュリエット・パウエル&アート・クライナー、The AI Dilemma – インタビューシリーズの著者』

『AIのジレンマ』は、ジュリエット・パウエルとアート・クライナーによって書かれましたジュリエット・パウエルは、著者であ...

人工知能

「スノーケルAIのCEO兼共同創設者、アレックス・ラットナー - インタビューシリーズ」

アレックス・ラトナーは、スタンフォードAIラボを母体とする会社、Snorkel AIのCEO兼共同創設者ですSnorkel AIは、手作業のAI...