インテルの研究者たちは、CPU上でLLMs(Large Language Models)をより効率的に展開するための新しい人工知能のアプローチを提案しています
「インテルの研究者たちが新しい人工知能のアプローチを提案、CPU上で効率的に展開するLLM(Large Language Models)」
大型言語モデル(LLM)は、その驚異的なパフォーマンスと多様なタスクでの潜在能力により、世界中で話題となっています。テキスト生成、言語理解、テキスト要約などの能力でよく知られています。ただし、これらのモデルの広範な採用の一方で、モデルパラメータの膨大なサイズにより、推論には大きなメモリ容量と専用のハードウェアが必要であり、これまでこれらのモデルの展開は非常に困難でした。
推論に必要な計算能力を削減する方法の一つは、量子化手法を使用することです。つまり、人工ニューラルネットワークの重みと活性化関数の精度を低下させることです。INT8や重みのみの量子化など、推論コストを改善するための方法はいくつかありますが、これらの方法は一般的にCUDAに最適化されており、必ずしもCPU上で動作するわけではありません。
このIntelの研究論文の著者は、LLMを効率的にCPU上に展開する方法を提案しています。彼らのアプローチは、自動INT-4重みのみの量子化(低精度がモデルの重みにのみ適用され、活性化関数の精度は高く保たれます)のフローをサポートしています。また、CPU上の推論プロセスを加速する高度に最適化されたカーネルを持つ特定のLLMランタイムも設計しています。
- マイクロソフトの研究者たちは、FP8混合精度トレーニングフレームワークを公開しました:大規模な言語モデルのトレーニング効率を超高速化します
- 「MIT研究者がLILOを導入:プログラム合成のための解釈可能なライブラリを学ぶための神経シンボリックフレームワーク」
- アマゾンの研究者がフォーチュナを紹介:ディープラーニングにおける不確実性量子化のためのAIライブラリ
量子化フローは、Intel Neural Compressorをベースに開発され、異なる量子化レシピ、粒度、グループサイズでのチューニングが可能で、精度目標を満たすINT4モデルを生成することができます。モデルはその後、LLMランタイムに渡され、量子化モデルのパフォーマンスを評価するために設計された特殊環境で評価されます。このランタイムは、CPU上のLLMの効率的な推論を提供するために設計されています。
実験では、研究者たちはパラメータサイズが異なる人気のあるLLMをいくつか選びました(7Bから20Bまで)。オープンソースのデータセットを使用してFP32モデルとINT4モデルのパフォーマンスを評価しました。選択したデータセット上での量子化モデルの精度は、FP32モデルとほぼ同等であることが観察されました。さらに、次のトークン生成のレイテンシの比較分析を行い、LLMランタイムがggmlベースのソリューションよりも最大1.6倍優れていることがわかりました。
結論として、この研究論文は、LLMに関連する最大の課題の1つであるCPU上での推論に対する解決策を提案しています。従来、これらのモデルはGPUのような専用ハードウェアが必要であり、多くの組織にとって利用できない状況でした。この論文では、INT4モデルの量子化と専用のLLMランタイムを提供することで、CPU上のLLMの効率的な推論を実現しています。人気のあるLLMの一連の評価では、この手法はggmlベースのソリューションに比べて優位性を示し、FP32モデルと同等の精度を提供します。ただし、今後の改善の余地もあり、研究者はAI生成コンテンツの成長する需要に対応するために、PC上での生成型AIを強化する計画です。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 「ハギングフェイスの研究者たちは、Distil-Whisperを紹介しました:高性能でリソースが限られた環境におけるギャップを埋めるコンパクトな音声認識モデル」
- このAI研究は、単一の画像を探索可能な3Dシーンに変換する、パノラマニックNeRF(PERF)を紹介します
- このAI研究は、高品質なビデオ生成のための2つの拡散モデル、テキストからビデオ(T2V)モデルと画像からビデオ(I2V)モデルを紹介します
- このAI研究は、「Atom」という低ビット量子化技術を導入し、効率的かつ正確な大規模言語モデル(LLM)の提供を行っています
- このAI研究により、チップデザインに適した言語モデルの独自な手法が紹介されています
- オックスフォード大学の研究者たちは、DynPointという人工知能アルゴリズムを開発しましたこのアルゴリズムは、自由な単眼ビデオの新しい視点を迅速に合成することを目的としています
- 中国の研究者たちは、複雑な現実世界の課題を解決するために、大規模言語模型(LLM)がマルチモーダルツールを利用できるようにする人工知能フレームワークであるControlLLMを紹介しました