「機械学習に人間のミスを組み込む」

Integrating human errors into machine learning

研究者たちは、不確実なラベルでのトレーニングが、これらのシステムが不確実なフィードバックを処理する能力を向上させることを発見しました。¶ クレジット:PeopleImages/Getty Images

イギリスのケンブリッジ大学、アラン・チューリング研究所、プリンストン大学、およびGoogle DeepMindの科学者たちは、機械学習(ML)システムに不確実性を組み込んでいます。

研究者たちは、確立された画像分類データセットを使用して、人間が特定の画像に注釈を付ける際に不確実性レベルをフィードバックし、評価することができました。

彼らは、不確実なラベルでトレーニングすることで、システムが不確実なフィードバックをより良く処理できることを学びましたが、人間のフィードバックにより全体的なパフォーマンスが急速に低下します。

ケンブリッジ大学のマシュー・バーカー氏は、「私たちは[行動研究とML]を結びつけようとしており、機械学習が人間の不確実性を処理できるようにすることが目標です。」と述べています。 ケンブリッジ大学(英国)の記事を全文で表示

抄録の著作権は、2023年 SmithBucklin、ワシントンD.C.、アメリカ合衆国に帰属します

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

コンピュータサイエンス

「トップの生成AIプロジェクト」

急速に進化する技術のパノラマの中で、生成型AIプロジェクトの出現は、コンテンツの作成、体験、および相互作用の方法を再定...

機械学習

マルチモーダル医療AI

Google ResearchのHealth AI部門の責任者であるGreg Corradoと、Engineering and ResearchのVPであるYossi Matiasによって投...

AI研究

黄さんの法則に留意する:エンジニアたちがどのように速度向上を進めているかを示すビデオ

話の中で、NVIDIAのチーフサイエンティストであるビル・ダリー氏が、モーアの法則時代後のコンピュータパフォーマンスの提供...

人工知能

150以上のミッドジャーニーロゴのプロンプト

「Midjourneyのような生成AIツールを使って、ビジネスのために美しいロゴを作成することができます」

機械学習

「グラフ機械学習 @ ICML 2023」

「壮大なビーチとトロピカルなハワイの風景🌴は、勇敢な科学者たちを国際機械学習会議に出席し、最新の研究成果を発表するこ...

データサイエンス

なぜAIチップの将来がニューロモーフィックコンピューティングにおいて重要なのか?

神経形態計算はAIとIoTを変革する可能性がありますより正確で多様性に富み、信頼性の高いアクセスしやすいAIの波を引き起こす...