「機械学習に人間のミスを組み込む」

Integrating human errors into machine learning

研究者たちは、不確実なラベルでのトレーニングが、これらのシステムが不確実なフィードバックを処理する能力を向上させることを発見しました。¶ クレジット:PeopleImages/Getty Images

イギリスのケンブリッジ大学、アラン・チューリング研究所、プリンストン大学、およびGoogle DeepMindの科学者たちは、機械学習(ML)システムに不確実性を組み込んでいます。

研究者たちは、確立された画像分類データセットを使用して、人間が特定の画像に注釈を付ける際に不確実性レベルをフィードバックし、評価することができました。

彼らは、不確実なラベルでトレーニングすることで、システムが不確実なフィードバックをより良く処理できることを学びましたが、人間のフィードバックにより全体的なパフォーマンスが急速に低下します。

ケンブリッジ大学のマシュー・バーカー氏は、「私たちは[行動研究とML]を結びつけようとしており、機械学習が人間の不確実性を処理できるようにすることが目標です。」と述べています。 ケンブリッジ大学(英国)の記事を全文で表示

抄録の著作権は、2023年 SmithBucklin、ワシントンD.C.、アメリカ合衆国に帰属します

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

このAI論文は、深層学習を用いて大規模な記録の神経活動を解読する人工知能フレームワーク、POYO-1を紹介しています

ジョージア工科大学、Mila、モントリオール大学、マギル大学の研究者らは、多様な大規模な神経記録を横断的にモデリングする...

AIニュース

アマゾンがベッドロックを展開:AIモデルの評価と人間のベンチマーキング

開発において、Amazon Bedrockは、特定のニーズに合わせて選択し、比較し、最適なファウンデーションモデル(FM)を選択する...

データサイエンス

テキストと画像の検索を行うNodeJS AIアプリを構築する

チュートリアル:stargate-mongooseとJSON APIを使用して、DataStax Astra DB(およびベクトル検索)をサポートするNodeJSア...

機械学習

「PyTorchモデルのパフォーマンス分析と最適化 - パート3」

これは、PyTorch ProfilerとTensorBoardを使用してPyTorchモデルの分析と最適化を行うトピックに関するシリーズ投稿の3部目で...

人工知能

私たちの早期警戒システムへのサポート

GoogleのYossi MatiasさんとWMOのインフラストラクチャー部門ディレクターであるAnthony Reaさんが「Early Warnings For All ...

機械学習

「SDXL 1.0の登場」

機械学習の急速に進化する世界では、新しいモデルやテクノロジーがほぼ毎日私たちのフィードに押し寄せるため、最新情報を把...