これは本当のマルチモーダル学習ですか?-ImageBindについて説明します

「本物のマルチモーダル学習とは?- ImageBindについて解説します」

テキストへの画像変換や音声へのテキスト変換、それが昨年のマルチモーダルラーニングです!Meta AIのImageBind [1] です。これこそが本物のマルチモーダルラーニングです!

ImageBindは複数のモダリティを1つの共有埋め込み空間に結合します。これは、クロスモーダル検索を行うことができるということです。つまり、音声シーケンス(例えばパチパチ音を含む)を入力し、パチパチする火の画像を取得することができます。また、鳥の画像と波の音など、2つの異なるモダリティを組み合わせて、海の中の同じ鳥の画像を取得することもできます。それにしても、DALLE-2を音声を入力に使うようにアップグレードすることはできないのでしょうか?

アイデアと方法

ここで非常にクールなことは、ImageBindが音声とテキスト、またはテキストと深度、音声とIMU、深度と熱などに対して訓練されたことが一度もないということです。実際、必要なデータは任意のモダリティと画像のペアだけでした。だからこそ、ImageBindと名付けられました。彼らは各モダリティを画像またはビジョンの埋め込み空間に結び付けます。

アイデア自体は非常にシンプルです。私たちは、例えば画像と動画をエンコードすることができる事前トレーニング済みのビジョンエンコーダ(例:ViT)から始めます。この画像の埋め込みを使用して、固定された画像の埋め込みと一致するように、別のモデルを訓練することができます。

Illustration of training two separate models to predict similar embeddings for corresponding inputs of different modalities. Source: Adapted by the author from [1]

つまり、この画像とその埋め込みに対して、画像のキャプションに対して非常に似た埋め込みを生成するようにテキストエンコーダを訓練します。同じことが画像とその深度データにも適用されます。画像の埋め込みを持っているので、対応する画像の埋め込みに類似した埋め込みを生成するように新しい深度データエンコーダを訓練しています。同様に、画像とその熱データ、ビデオとその音声、ビデオと記録されたIMUデータにも適用されます。なお、IMUデータとは、加速度計とジャイロスコープによって記録された時系列データのことです。

Example of IMU data. Source: [1]

例えば、ここには調理中の人物のビデオがありますが、彼は加速度計とジャイロスコープを身につけていました…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

コンピュータサイエンス

ジェイソン・アーボン:「百万年後、超パワフルなコンピュータは我々の時代のテスターたちを称えるでしょう」

「Jason Arbonと一緒に、テストにおけるAIの使用、いくぶん不公平なマニュアルQA vs. 自動化QAの闘い、新しいテクノロジーの...

機械学習

プラグインを使ったチャットボットのためのカスタムスキルの作成

「生成型AIを活用するチャットボットは、外部ソースと連携するプラグインを使用してドメインの専門知識を提供し、個別の応答...

データサイエンス

「限られた訓練データで機械学習モデルは信頼性のある結果を生み出すのか?ケンブリッジ大学とコーネル大学の新しいAI研究がそれを見つけました...」

ディープラーニングは、音声認識から自律システム、コンピュータビジョン、自然言語処理まで、人工知能の中で強力で画期的な...

データサイエンス

データの観察可能性:AI時代の信頼性

「GenAIにとって、データの可観測性は解決策、パイプラインの効率性、ストリーミングとベクターインフラストラクチャに優先す...

AI研究

ISTAオーストリアとニューラルマジックの研究者が、トリリオンパラメータの言語モデルの効率的な実行のための革命的な圧縮フレームワークであるQMoEを紹介

複数の専門サブネットワークの出力を組み合わせて予測や意思決定を行うために設計されたニューラルネットワークモデルは、エ...

データサイエンス

「枝は何も必要ありません:私たちの主観的なMLバージョニングフレームワーク」

「Gitブランチを使用したMLプロジェクトのバージョニングを簡素化し、ワークフローをシンプルにし、データとモデルを整理し、...