HuggingFaceはTextEnvironmentsを紹介します:機械学習モデルと、モデルが特定のタスクを解決するために呼び出すことができる一連のツール(Python関数)の間のオーケストレーターです

HuggingFaceがTextEnvironmentsをご紹介:機械学習モデルとタスク解決ツールのオーケストレーター

<img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/11/Screenshot-2023-11-03-at-11.55.50-AM-1024×581.png”/><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/11/Screenshot-2023-11-03-at-11.55.50-AM-150×150.png”/><p>Supervised Fine-tuning (SFT), Reward Modeling (RM), and Proximal Policy Optimization (PPO) are all part of TRL. In this full-stack library, researchers give tools to train transformer language models and stable diffusion models with Reinforcement Learning. The library is an extension of Hugging Face’s transformers collection. Therefore, language models can be loaded directly via transformers after they have been pre-trained. Most decoder and encoder-decoder designs are currently supported. For code snippets and instructions on how to use these programs, please consult the manual or the examples/ subdirectory.</p><p><strong>Highlights</strong></p><ul><li>Easily tune language models or adapters on a custom dataset with the help of SFTTrainer, a lightweight and user-friendly wrapper around Transformers Trainer.</li><li>To quickly and precisely modify language models for human preferences (Reward Modeling), you can use RewardTrainer, a lightweight wrapper over Transformers Trainer.</li><li>To optimize a language model, PPOTrainer only requires (query, response, reward) triplets.</li><li>A transformer model with an additional scalar output for each token that can be utilized as a value function in reinforcement learning is presented in AutoModelForCausalLMWithValueHead and AutoModelForSeq2SeqLMWithValueHead.</li><li>Train GPT2 to write favourable movie reviews using a BERT sentiment classifier; implement a full RLHF using only adapters; make GPT-j less toxic; provide an example of stack-llama, etc.</li></ul><p><strong>How does TRL work?</strong></p><p>In TRL, a transformer language model is trained to optimize a reward signal. Human experts or reward models determine the nature of the reward signal. The reward model is an ML model that estimates earnings from a specified stream of outputs. Proximal Policy Optimization (PPO) is a reinforcement learning technique TRL uses to train the transformer language model. Because it is a policy gradient method, PPO learns by modifying the transformer language model’s policy. The policy can be considered a function that converts one series of inputs into another.</p><p>Using PPO, a language model can be fine-tuned in three main ways:</p><ul><li>Release<strong>:</strong> The linguistic model provides a possible sentence starter in answer to a question.</li><li>The evaluation may involve using a function, a model, human judgment, or a mixture of these factors. Each query/response pair should ultimately result in a single numeric value.</li><li>The most difficult aspect is undoubtedly optimization. The log-probabilities of tokens in sequences are determined using the query/response pairs in the optimization phase. The trained model and a reference model (often the pre-trained model before tuning) are used for this purpose. An additional reward signal is the KL divergence between the two outputs, which ensures that the generated replies are not too far off from the reference language model. PPO is then used to train the operational language model.</li></ul><p><strong>Key features</strong></p><ul><li>When compared to more conventional approaches to training transformer language models, TRL has several advantages.</li><li>In addition to text creation, translation, and summarization, TRL can train transformer language models for a wide range of other tasks.</li><li>Training transformer language models with TRL is more efficient than conventional techniques like supervised learning.</li><li>Resistance to noise and adversarial inputs is improved in transformer language models trained with TRL compared to those learned with more conventional approaches.</li><li>TextEnvironments is a new feature in TRL.</li></ul><p>The TextEnvironments in TRL is a set of resources for developing RL-based language transformer models. They allow communication with the transformer language model and the production of results, which can be utilized to fine-tune the model’s performance. TRL uses classes to represent TextEnvironments. Classes in this hierarchy stand in for various contexts involving texts, for example, text generation contexts, translation contexts, and summary contexts. Several jobs, including those listed below, have employed TRL to train transformer language models.</p><p>Compared to text created by models trained using more conventional methods, TRL-trained transformer language models produce more creative and informative writing. It has been shown that transformer language models trained with TRL are superior to those trained with more conventional approaches for translating text from one language to another. Transformer language (TRL) has been used to train models that can summarize text more precisely and concisely than those trained using more conventional methods.</p>

詳細についてはGitHubページをご覧ください https://github.com/huggingface/trl

要約すると:

TRLは、RLを使用してTransformer言語モデルをトレーニングする効果的な方法です。従来のより一般的な方法でトレーニングされたモデルと比較すると、TRLでトレーニングされたTransformer言語モデルは、適応性、効率性、堅牢性の点でより優れています。テキスト生成、翻訳、要約などの活動のためのTransformer言語モデルをトレーニングするには、TRLを使用することができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「NVIDIAがインドの巨大企業と提携し、世界最大の人口を持つ国でAIを進める」

世界最大の民主主義国は、AIを広範囲に採用し、自身と世界を変革する準備が整っています。 インドの最大の複合企業であるReli...

データサイエンス

説明可能なAI:ブラックボックスモデルの解明

イントロダクション 現代のデータ駆動型の世界では、機械学習はさまざまな産業でますます重要な役割を果たしています。説明可...

AIニュース

「2023年のAI タイムライン」

はじめに 人工知能(AI)は、技術的な進歩が人間のつながりの本質と共鳴する形で私たちの日常生活と交差する魅力的な領域です...

人工知能

「学生として、私がChatGPTを使って生産性を10倍にする方法」

現代の忙しい世界では、学生たちは常に生産性と効率を高める方法を求めています私自身も学生であり、一日中とても忙しかった...

データサイエンス

データ変換ツールにおけるAIの展望

人工知能はデータ変換ツールを革新し、効率性、正確性、リアルタイム処理を向上させています

データサイエンス

ジェネラティブAIを活用したシフトレフトテストの推進

「ジェネラティブAIがシフトレフトテストを向上させ、優れたソフトウェア開発のためのテストケースの自動生成と予測的なバグ...