Gradient Checkpointing、LoRA、およびQuantizationを使用して、単一のGPUにLLMをフィットさせてください

Gradient Checkpointing、LoRA、Quantizationを使って、単一のGPUにLLMをフィットさせてください

大規模な言語モデルの微調整を試みたことがある人は、GPUメモリを扱うのがいかに困難かを知っています。

「ランタイムエラー:CUDAエラー:メモリ不足」

このエラーメッセージは私の夜を悩ませています。

3B、7B、または13Bのパラメータモデルは大きく、微調整は時間がかかります。トレーニング中にメモリが不足すると、イライラする上にコストがかかることもあります。

しかし、心配しないでください、私が手助けします!

この記事では、次の3つのテクニックを使って、知っておく必要があるか、既に使っているかもしれない方法について説明します:Gradient Checkpointing、Low-Rank Adapters、およびQuantization

これらは、トレーニング中にメモリが不足するのを防ぎ、多くの時間を節約するのに役立ちます。

もしLLMの微調整に慣れていない場合は、私がBloom-3Bを「指輪物語」の本に対して微調整する過程を解説した記事があります。

個人データでLLMを微調整:「指輪物語」のストーリーテラーを作ろう

個人データでLLMを微調整できるようになりました。個人情報を管理しながらコントロールを維持できます…

VoAGI.com

さあ、始めましょう!

Amritanshu Sikdar氏の写真(Unsplash)

Gradient Checkpointing

Gradient Checkpointingは、ニューラルネットワークのトレーニング中に、最小限の層のみを保持するために動的計算を使用する技術です。

このプロセスを理解するためには、逆伝播がどのように行われ、プロセス全体でレイヤーがGPUメモリに保存されるかを理解する必要があります。

フォワードとバックワード伝播の基礎

フォワード伝播とバックワード伝播は、ディープニューラルネットワークのトレーニングの2つのフェーズです。

3Blue1Brown Youtubeチャンネルより

フォワードパスでは、入力がベクトル化され(画像をピクセルに変換し、テキストを埋め込みに変換する)、各要素は線形積和と活性化の連続を通じてニューラルネットワーク全体で処理されます…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「マーシャンの共同創設者であるイータン・ギンスバーグについてのインタビューシリーズ」

エタン・ギンズバーグは、マーシャンの共同創業者であり、すべてのプロンプトを最適なLLMに動的にルーティングするプラットフ...

人工知能

「Kognitosの創設者兼CEO、ビニー・ギル- インタビューシリーズ」

ビニー・ギルは、複数の役職と企業を横断する多様で幅広い業務経験を持っていますビニーは現在、Kognitosの創設者兼CEOであり...

人工知能

ファイデムのチーフ・プロダクト・オフィサー、アルパー・テキン-インタビューシリーズ

アルパー・テキンは、FindemというAI人材の獲得と管理プラットフォームの最高製品責任者(CPO)ですFindemのTalent Data Clou...

人工知能

「ゲイリー・ヒュースティス、パワーハウスフォレンジクスのオーナー兼ディレクター- インタビューシリーズ」

ゲイリー・ヒュースティス氏は、パワーハウスフォレンジックスのオーナー兼ディレクターであり、ライセンスを持つ私立探偵、...

AIニュース

Q&A:ブラジルの政治、アマゾンの人権、AIについてのGabriela Sá Pessoaの見解

ブラジルの社会正義のジャーナリストは、MIT国際研究センターのフェローです

人工知能

ディープAIの共同創業者兼CEO、ケビン・バラゴナ氏- インタビューシリーズ

ディープAIの創設者であるケビン・バラゴナは、10年以上の経験を持つプロのソフトウェアエンジニア兼製品開発者です彼の目標...