「理論から実践への勾配ブースティング(パート2)」

Gradient Boosting from Theory to Practice (Part 2)

Scikit-Learnを使用して、異なる分類および回帰問題を解決するために勾配ブースティングクラスを使用する

UnsplashのLuca Bravoによる写真

この記事の最初の部分では、勾配ブースティングアルゴリズムを紹介し、擬似コードでの実装を示しました。

この記事のこの部分では、このアルゴリズムを実装するScikit-Learnのクラスを探求し、さまざまなパラメータを説明し、いくつかの分類および回帰問題を解決する方法を示します。

より最適化された高スケーラビリティを備えたgradient boostingの実装を提供するXGBoostライブラリ(将来の記事でカバーされます)に比べて、小〜VoAGIサイズのデータセットでは、Scikit-Learnの勾配ブースティングクラスを使用する方が簡単であり、インターフェースもシンプルでチューニングするハイパーパラメータの数もはるかに少ないことがよくあります。

Scikit-Learnにおける勾配ブースティング

Scikit-Learnは、勾配ブースティング決定木(GBDT)モデルを実装する以下のクラスを提供しています:

  1. GradientBoostingClassifierは分類問題に使用されます。
  2. GradientBoostingRegressorは回帰問題に使用されます。

決定木の標準的なパラメータ(criterion、max_depth(デフォルトは3)、min_samples_splitなど)に加えて、これらのクラスは以下のパラメータを提供します:

  1. loss — 最適化される損失関数です。GradientBoostingClassifierでは、この関数は「log_loss」(デフォルト)または「exponential」(勾配ブースティングをAdaBoostアルゴリズムのように動作させる)になります。GradientBoostingRegressorでは、この関数は「squared_loss」(デフォルト)、「absolute_loss」、「huber」、または「quantile」になります。
  2. n_estimators — ブースティングの反復回数です(デフォルトは100)。
  3. learning_rate — 各木の寄与を縮小する係数です(デフォルトは0.1)。
  4. subsample — 各木のトレーニングに使用するサンプルの割合です(デフォルトは1.0)。
  5. max_features — 各ノードで最適な分割を探索する際に考慮する特徴量の数です。オプションは、整数を指定することです…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「クリス・サレンス氏、CentralReachのCEO - インタビューシリーズ」

クリス・サレンズはCentralReachの最高経営責任者であり、同社を率いて、自閉症や関連する障害を持つ人々のために優れたクラ...

人工知能

「コーネリスネットワークスのソフトウェアエンジニアリング担当副社長、ダグ・フラーラー氏 - インタビューシリーズ」

ソフトウェアエンジニアリングの副社長として、DougはCornelis Networksのソフトウェアスタック全体、Omni-Path Architecture...

人工知能

ムーバブルインクのCEO兼共同創設者であるヴィヴェク・シャルマ氏についてのインタビュー・シリーズ

ビヴェクは2010年にムーバブルインクを共同設立し、急速な成長を遂げながら、600人以上の従業員を擁し、世界有数の革新的なブ...

人工知能

「ジンディのCEO兼共同創設者、セリーナ・リー― インタビューシリーズ」

「Celina Leeは、ZindiのCEO兼共同創設者であり、アフリカのデータサイエンティスト向けの最大の専門ネットワークです Celina...

人工知能

「UVeyeの共同設立者兼CEO、アミール・ヘヴェルについてのインタビューシリーズ」

アミール・ヘヴァーは、UVeyeのCEO兼共同創設者であり、高速かつ正確な異常検出により、自動車およびセキュリティ産業に直面...

人工知能

「Ami Hever、UVeyeの共同創設者兼CEO - インタビューシリーズ」

עמיר חבר הוא המנכל והמייסד של UVeye, סטארט-אפ ראיה ממוחשבת בלמידה עמוקה, המציבה את התקן הגלובלי לבדיקת רכבים עם זיהוי...