Googleがコンテンツを評価する方法:最新の更新

Google's Method for Evaluating Content Latest Updates

グーグルは、世界をリードする検索エンジンであり、人工知能(AI)技術の理解と適応において重要な進展を遂げています。最近のGoogle Search Central Live Tokyo 2023イベントでは、ゲイリー・イリエス氏をはじめとする専門家たちが、GoogleのAI生成コンテンツに対するアプローチについて貴重な洞察を共有しました。本記事では、GoogleのAIコンテンツに関する方針や、コンテンツ評価におけるE-E-A-T(Experience、Expertise、Authoritativeness、Trustworthiness)の概念について掘り下げます。

Google Search Central Live Tokyo 2023:AIコンテンツに関する洞察

Google Search Central Live Tokyo 2023イベントでは、ゲイリー・イリエス氏をはじめとする業界の専門家たちが、AI生成コンテンツに関するGoogleの最新の見解と推奨事項について明らかにしました。このイベントは、コンテンツ制作者や出版社にとってのAIのチャレンジや機会を議論するプラットフォームを提供しました。

また読む:Google I/O 2023のハイライト

GoogleはAIではなく、コンテンツの品質を優先する

コンテンツがAI生成されたものであろうとなかろうと、Googleはコンテンツの品質に重要性を置いています。Googleは、関連性が高く、価値があり、信頼性のある情報をユーザーに提供することに注力しています。つまり、コンテンツの品質は、その作成方法よりも重要です。

区別なし:GoogleはAI生成コンテンツにラベルを付けない

一部の人々は、GoogleがAI生成と人間によるコンテンツを区別するのかと疑問に思うかもしれませんが、答えは「いいえ」です。Googleは、AI生成コンテンツに明示的にラベルを付けていません。これは、コンテンツの起源にかかわらず、その価値と関連性に基づいてコンテンツを評価することにGoogleがコミットしていることを強調しています。

また読む:AI検出器がAI生成と判定した米国憲法

EUによるAI生成コンテンツのラベル付けの呼びかけ

フェイクニュースへの対抗の文脈で、欧州連合(EU)は、ソーシャルメディア企業に対してAI生成コンテンツに自主的にラベルを付けるよう促しています。しかし、Googleは出版社に対してそのようなラベル付けの要件を課しておらず、ラベル付けよりもコンテンツの品質を優先することを選択しました。

また読む:EU、ディープフェイクとAIコンテンツの識別策を提唱

GoogleはAI生成画像にラベル付けを推奨する

Googleは、IPTC画像データのメタデータを使用してAI生成画像にラベルを付けることを出版社に推奨していますが、必須ではありません。このアプローチにより、透明性が確保され、ユーザーがAI生成ビジュアルを識別できるようになります。さらに、画像AI企業は、出版社の手間を省き、自動的にメタデータを追加する自動化方法を開発しています。

また読む:Googleが発表したスタイルドロップ:驚くべきビジュアルのための究極のデザインハック

判断の余地あり:AI生成テキストのラベル付けは出版社が決定する

画像とは異なり、Googleは出版社に対して、AI生成テキストコンテンツにラベルを付けることを要求していません。代わりに、Googleは、テキストコンテンツをAI生成とラベル付けすることが、全体的なユーザーエクスペリエンスを向上させるかどうかを出版社の裁量に委ねています。この柔軟なアプローチは、コンテンツの性質が異なることを認識し、出版社の判断を尊重しています。

人間によるコンテンツはGoogleのランキングで依然として主導的な役割を果たす

人間によるコンテンツの重要性を強調することで、Googleは、そのアルゴリズムとランキングシグナルが、自然な人間によるコンテンツを評価して優先するように主に設計されていることを再確認しています。これにより、各分野で経験、専門知識、権威性を持つ個人によって作成されたコンテンツがGoogleのランキングの最前線に位置することが保証されます。

また読む:グラミー賞がAIを禁止:人間の創造者が中心に

E-E-A-Tの理解:コンテンツ評価における重要な要素

E-E-A-Tは、Experience、Expertise、Authoritativeness、Trustworthinessの頭文字をとった略語であり、Googleのコンテンツ評価プロセスにおいて重要な役割を果たしています。Googleの検索品質評価者ガイドラインでは、著者がその主題に対する専門知識や経験を示しているかどうかを評価することが推奨されています。この基準は、コンテンツの信頼性と信頼性を確立するのに役立ちます。

AIが抱える経験と品質の閾値に対する課題

AIが直面する課題の1つは、特定のトピックや製品における経験を主張することができないことです。そのため、AI生成コンテンツは、人間の経験に重点を置いた特定のタイプのコンテンツの品質基準を満たすことができない場合があります。Googleはこの問題に対して認識を示し、この懸念に対処し、包括的な方針を確立するための内部的な議論を行っています。

移行期:AIの信頼性の評価

AI技術が進歩するにつれて、AIによるコンテンツの信頼性の不足は独自の課題を提供します。かつてはAIによるコンテンツを実験することに熱心だった主要なメディア企業も、その意義を見直すために今はスローダウンしています。Googleはコンテンツの品質維持の重要性を認識し、出版社が望む基準を満たすように注意を促しています。

また読む:Google Bardの最新の進展が論理と推論を向上

私たちの意見

GoogleのAIコンテンツに対する進化する方針は、AI技術の進展に合わせてコンテンツの品質の重要性を強調しています。Googleがアプローチを洗練するにつれて、出版社はE-E-A-T原則に沿った価値ある信頼性の高いコンテンツを作成するよう努めるべきです。GoogleのAIによるコンテンツに対する姿勢を理解することで、出版社は最高のユーザー体験を提供しながらオンラインプレゼンスを最大化するために戦略を適応させることができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

3B、4B、9B のスケールで 5 つの新しいマルチモーダルモデルを備えた OpenFlamingo チームが、前モデルを上回る OpenFlamingo v2 をリリースしました

ワシントン大学、スタンフォード大学、AI2、UCSB、Googleの研究者グループは、最近OpenFlamingoプロジェクトを開発しました。...

機械学習

「AIシステムのリスク評価方法を学びましょう」

「人工知能(AI)は急速に進化する分野であり、社会の多くの側面を改善し変革する可能性を持っています2023年、AI技術の採用...

データサイエンス

OpenAIは、GPTBotを導入しましたこれは、インターネット全体からデータを自動的にスクレイピングするために設計されたウェブクローラです

OpenAIは、公開ウェブサイトでのデータ収集に起因するプライバシーや知的財産権の懸念に対応するため、GPTBotと呼ばれる新し...

データサイエンス

セルンでの1エクサバイトのディスクストレージ

スイスのヨーロッパ原子核研究機構(CERN)は、1エクサバイトの閾値を超え、100万テラバイト(TB)のディスクスペースを蓄積...

コンピュータサイエンス

「AIイノベーションのためのニューロエボリューションの活用」

イントロダクション ニューロエボリューションは、AIがニューラルネットワークと進化アルゴリズムを組み合わせて創造力を育む...

AIニュース

DEF CONでハッカーたちがいたずらをしてAIの脆弱性を暴露

ラスベガスで開催されるDEF CONハッキングカンファレンスでは、知恵とテクノロジーの魅力的な衝突が行われます。ハッカーたち...