グーグルの研究者たちは、差分プライバシーを持つ機械学習システムの監査において、新たなシングルランアプローチを発表しました

「Google研究者が新しいシングルランアプローチで差分プライバシーを持つ機械学習システムの監査を発表」

差分プライバシー(DP)は、モデルの訓練に使用される個人データのプライバシーを保護するための機械学習のよく知られた技術です。これは、モデルの出力が入力データの個人の存在または不在に影響されないことを保証する数学的な枠組みです。最近、このようなモデルのプライバシー保証を柔軟かつ効率的な方法で評価するための新しい監査手法が開発されました。この手法は、基礎となるアルゴリズムに対して最小限の仮定を置いた多目的かつ効率的な評価を可能にします。

グーグルの研究者たちは、個別のトレーニングランに焦点を当てた差分プライバシーを持つ機械学習システムの監査手法を紹介しました。この研究では、差分プライバシーと統計的一般化の関係に重点が置かれており、提案された監査手法の重要な側面となっています。

DPは個別のデータが結果に重大な影響を与えないことを保証し、計算可能なプライバシー保証を提供します。プライバシーの監査は、DPのアルゴリズムにおける分析や実装のエラーを評価します。従来の監査は計算コストが高く、複数の実行を必要とすることがしばしばあります。この手法は、トレーニング例の追加または削除を並列に行うことで計算コストを最小限に抑え、アルゴリズムに最小限の仮定を課すことができ、ブラックボックスおよびホワイトボックスのシナリオに適応することができます。

https://arxiv.org/abs/2305.08846

この研究で示される手法は、アルゴリズムを最小限の仮定で追加または除外の例を独立して含め、意思決定のためのスコアを計算することで、統計的一般化と差分プライバシーの関係を分析しています。このアプローチは、ブラックボックスおよびホワイトボックスのシナリオに適用可能です。アルゴリズム3であるDP-SGDオーディターは、具体的な具現化です。それは、異なるパラメータの評価や分布内の例の考慮を含む、さまざまな差分プライバシーアルゴリズムに対して彼らの監査手法の一般化可能性を強調しています。

この監査手法は、数学的な分析やエラー検出の評価を支援する計算可能なプライバシー保証を提供します。提案された監査手法は、さまざまな差分プライバシーアルゴリズムに適用可能であり、分布内の例やパラメータの評価などの考慮事項があります。これにより、計算コストを削減しながら効果的なプライバシー保証が実現されます。

提案された監査手法により、単一のトレーニングランで差分プライバシーを持つ機械学習技術を評価し、個別にトレーニング例を追加または削除することで並列処理を活用することができます。この手法は、従来の監査に比べて計算コストを削減しながら効果的なプライバシー保証を提供します。さまざまな差分プライバシーアルゴリズムに適用可能な監査手法の汎用性が強調されています。分布内の例やパラメータの評価など、実践的な考慮事項にも対応しており、プライバシー監査に貢献しています。

まとめると、この研究の主なポイントは次の通りです:

  • 提案された監査手法により、単一のトレーニングランで差分プライバシーを持つ機械学習技術を評価することが可能であり、トレーニング例の追加または削除を並列に行います。
  • この手法は、アルゴリズムに関して最小限の仮定を必要とし、ブラックボックスおよびホワイトボックスの設定の両方に適用することができます。
  • この手法は、計算可能なプライバシー保証を提供し、アルゴリズムの実装のエラーを検出したり数学的な分析の正確さを評価したりすることができます。
  • この手法はさまざまな差分プライバシーアルゴリズムに適用可能であり、従来の監査に比べて計算コストを削減しながら効果的なプライバシー保証を提供します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「DreamSyncに会ってください:画像理解モデルからのフィードバックを用いてテキストから画像の合成を改良する新しい人工知能フレームワーク」

カリフォルニア大学南部、ワシントン大学、バール・イラム大学、およびGoogle Researchの研究者は、人間の注釈、モデルアーキ...

データサイエンス

2023年に知っておくべきトップ10のパワフルなデータモデリングツール

イントロダクション データ駆動型の意思決定の時代において、競争力を維持するために正確なデータモデリングツールを持つこと...

機械学習

大規模言語モデル(LLM)の微調整

この投稿では、事前学習されたLLMをファインチューニング(FT)する方法について説明しますまず、FTの重要な概念を紹介し、具...

データサイエンス

「緑を守る:加速されたアナリティクスがコストと炭素排出を削減する」

企業は、加速されたコンピューティングが収益向上に貢献するだけでなく、地球にポジティブな影響を与えることを発見していま...

データサイエンス

「Langchain x OpenAI x Streamlit — ラップソングジェネレーター🎙️」

「LangchainフレームワークをStreamlitとOpenAIのGPT3モデルに統合したWebアプリを作成する方法」

データサイエンス

AIは、人間の確証バイアスを克服できるか?

『思考、速思速行』という本でノーベル賞受賞者ダニエル・カーネマンは、私たちは皆、人間の脳が本来すべきことからは遠く離...