Googleの研究者が新たな大規模言語モデルの能力向上に向けた『Universal Self-Consistency (USC)』を披露

「Googleの研究者による『Universal Self-Consistency (USC)』の披露で、新たな大規模言語モデルの能力向上が期待される」

複数の候補者から最も一貫性のある回答を選び出し、特に数理推論やコード生成などのタスクのパフォーマンスを向上させる問題は、Googleの研究者によって彼らのUniversal Self-Consistency (USC) メソッドを介して取り組まれてきました。このメソッドはLLMを活用し、同一の回答形式や実行結果へのアクセスを必要とせずに、標準的な自己整合性と比較可能な結果を達成します。

再ランキングはアウトプットのサンプリングと事後の基準の適用により、言語モデルの生成を改善します。LLMは、人間の参照なしでモデル生成テキストを評価します。提案されたUSCメソッドは、追加のラベル付きデータや外部の再ランキングモデルを必要とせずに、標準自己整合性と同等のパフォーマンスを発揮します。

LLMは数理推論やコード生成などのタスクに優れています。従来のアプローチでは、サンプリングと基準に基づいて選択することで、LLMの出力品質を向上させてきました。自己整合性はユニークな回答を持つ仕事に効果的ですが、開放的な時代には苦労します。USCは、LLMを使用して複数の候補者から最も一貫性のある回答を選びます。多様なベンチマークで実証されたように、回答の抽出を排除したUSCは、開放的な生成タスクの向上に効果的です。

USCメソッドはLLMを用いて複数の候補者から最も一貫性のある回答を選び出すことで、回答の抽出の必要性を排除します。USCは数理推論、コード生成、要約、開放的なQAなどのベンチマークを使用して自己整合性を自由形式の生成タスクに拡張します。アプローチはLLMを使用して複数のサンプルを生成し、一貫性に基づいて回答を選択します。

USCメソッドは、オリジナルの自己整合性アプローチの制限を超えた開放的生成タスクでの有効性を示しています。USCは、異なる回答形式を持つ数理推論タスクで標準の自己整合性に匹敵し、コード生成タスクではコードの実行を必要としない実行ベースの自己整合性と同等の結果を示します。USCは長い文脈の要約タスクでベースラインを常に改善し、TruthfulQAベンチマークで最高の真実性と情報性の評価を受けます。USCのパフォーマンスは異なる回答順序に対して堅牢であり、特定のタスクの微調整によりさらに向上させることができます。

結論として、USCメソッドは長い文脈の要約や開放的な質問応答タスクにおいてベースラインを一貫して上回り、自由形式の生成タスクにおいて非常に効果的であることが示されています。LLMを使用して複数の候補者から最も一貫性のある回答を選び出すことで、数理推論タスクやコード生成タスクなどのさまざまな応用において、類似した回答形式や実際の実行結果を必要としません。USCは、さまざまな文脈で正確で信頼性の高い回答を生成するための貴重なツールです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

マイクロソフトのAIチームがNaturalSpeech 2を発表:強力なゼロショット音声合成と向上した感情表現のための潜在的拡散モデルを備えた最先端のTTSシステム

テキストから音声(TTS)の目標は、それがリアルな人が話したような高品質で多様な音声を生成することです。プロソディ、話者...

機械学習

「NVIDIAは、最大級のAmazon Titan Foundationモデルのトレーニングを支援しています」

大型言語モデルに関するすべての情報は大きいです。巨大なモデルは、数千台のNVIDIA GPU上で大規模なデータセットをトレーニ...

機械学習

CoDiに会おう:任意対任意合成のための新しいクロスモーダル拡散モデル

ここ数年、テキストからテキスト、画像、音声など、別の情報を生成する堅牢なクロスモーダルモデルが注目されています。注目...

AIニュース

パーシステントシステムは、Amazon CodeWhispererと共にソフトウェアエンジニアリングの未来を形作っています

グローバルなデジタルエンジニアリングプロバイダーであるPersistent Systemsは、Amazon CodeWhispererとのいくつかのパイロ...

AIニュース

マルチモーダルAIがデジタルのつながりを作り出す

「複数の要素とデータストリームを組み合わせることにより、マルチモーダルAIはよりスマートで人間らしいシステムの可能性を...

AIニュース

AIの環境負荷軽減:アプリを持続可能にするための7つの戦略

記事では、AIアプリケーションに関連する炭素排出量を正確に推定する方法について包括的な方法論を探求しています現在の世界...