Google DeepMindはAlphaCode 2を導入しました:競争プログラミングの優れた進歩において、ジェミニモデルの力を利用した人工知能(AI)システム

「Google DeepMindがAlphaCode 2を導入:ジェミニモデルの力を活かした競技プログラミングの驚異的進化を遂げたAIシステム」

機械学習の分野では、テキストデータの生成と理解において驚くべき進展が見られています。しかし、問題解決における新しい革新は比較的単純な算術とプログラミング問題に制約されています。競技プログラミングは、限られた時間内に複雑な問題のためのコードソリューションを書く競技者のコーディングスキルを評価する厳しいものであり、批判的思考、論理的思考、アルゴリズムとコーディングの概念の徹底的な理解が必要です。

Google DeepMindは、競技プログラミングの分野を解決し、向上させることを目指して、AlphaCode 2を導入しました。AlphaCodeよりも高速で正確さと迅速さが求められるゲームであり、AlphaCode 2は基準を引き上げ、ゲームのルールを変えました。この人工知能(AI)システムは、GoogleのGeminiチームによって2023年に作成された強力なGeminiモデルに基づいており、その洗練された論理思考と問題解決能力の基盤となっています。

チームは、AlphaCode 2のアーキテクチャは強力な大規模言語モデル(LLM)と競技プログラミングに特化した高度な検索および再順位付けシステムに基づいていると共有しています。それはコードサンプルを生成するポリシーモデルのファミリー、多様性を促進するサンプリングメカニズム、非準拠のサンプルを除去するフィルタリングメカニズム、冗長性を除去するクラスタリングアルゴリズム、および最適な候補を選ぶスコアリングモデルで構成されています。

プロセスの最初のステップは、AlphaCode 2の基盤となったGemini Proモデルです。それはGOLDトレーニングターゲットを使って厳密な調整を2回行います。1回目はCodeContestsデータセットの新バージョンに焦点を当て、多くの問題と人間が生成したコード例が含まれています。その結果、競技プログラミングで遭遇する多くの困難に対応するために特別に設計された洗練されたモデルのファミリーが生成されます。

AlphaCode 2は包括的かつ綿密なサンプリング戦略を採用しています。システムはチャレンジごとに最大100万のコードサンプルを生成し、各サンプルにランダムに温度パラメータを割り当てることで多様性を促進します。高品質のC++のサンプルがGeminiの助けを借りてAlphaCode 2に使用されています。

評価によると、AlphaCode 2は競技プログラミングのよく知られたプラットフォームであるCodeforcesで最近のテストでその能力を示しました。AlphaCode 2はたった10回の試行で驚異的な43%の問題に回答することができました。同様の状況下で25%の問題を扱った先行システムAlphaCodeに比べて、これは重要な進展です。AlphaCode 2は平均して85番目のパーセンタイルに位置し、中央値の競合相手を上回り、かつてはAIシステムの能力とは考えられていなかったレベルで動作しています。

まとめると、AlphaCode 2は競技プログラミングにおいて困難な問題に取り組むためにAIシステムを使用する方法を示す、驚くべき開発です。このシステムの成功は技術的な成果であり、人間とAIプログラマがプログラミングの限界を押し上げるために協力する可能性を示しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

新しい人工知能(AI)の研究アプローチは、統計的な視点からアルゴリズム学習の問題として、プロンプトベースのコンテキスト学習を提示します

インコンテキスト学習は、最近のパラダイムであり、大規模言語モデル(LLM)がテストインスタンスと数少ないトレーニング例を...

AI研究

Google AIとフロリダ中央大学の研究者が、包括性と多様性のためのオープンソースのバーチャルアバターライブラリ(VALID)を発表しました

Google AR&VRチームは、センサスビューローに従って7つの異なる人種を表す210の完全なリグ付きアバターで構成されるバー...

機械学習

RAGのNLPにおける検索と生成の統一的な革新的アプローチ

イントロダクション AIの急速に進化する領域に、ゲームチェンジングなイノベーションが登場し、機械が人間の言語と関わる方法...

機械学習

ロボットスキル合成のための言語から報酬への変換

Googleの研究科学者、Wenhao YuとFei Xiaによる投稿 エンドユーザーがロボットに新しいタスクを教えるためのインタラクティブ...

機械学習

自然言語処理における転移学習:テキスト分類のための事前学習済みモデルの活用

この記事では、転移学習の概念について説明し、いくつかの人気のある事前学習済みモデルを探求し、テキスト分類に使用する方...

AI研究

「人間の活動認識におけるディープラーニング:このAI研究は、Raspberry PiとLSTMを使用した適応的なアプローチを導入し、位置に依存しない正確性を高めます」

ヒューマンアクティビティ認識(HAR)は、さまざまなセンサから収集したデータに基づいて、自動的に人間の活動を識別および分...