Google DeepMindの研究者がDiLoCoを導入:効果的かつ強靭な大規模言語モデルのトレーニングのための新しい分散型、低通信マシンラーニングアルゴリズム

Google DeepMindの研究者がDiLoCoを導入:新たな分散型・低通信マシンラーニングアルゴリズムによる効果的かつ強靭な大規模言語モデルのトレーニング

現実世界のアプリケーションにおける言語モデルのソアリング能力は、標準的なバックプロパゲーションのような従来の方法を使用しての大規模トレーニングに関連する複雑な課題によってしばしば制約されます。Google DeepMindの最新のブレークスルーであるDiLoCo(Distributed Low-Communication)は、言語モデルの最適化において新たな基準を設定します。研究チームの論文「DiLoCo:分散低通信言語モデルのトレーニング」では、革新的な分散最適化アルゴリズムを紹介し、緩く接続されたデバイスのクラスタ上で操作することで、驚異的なパフォーマンス向上と通信の500倍の削減を実現しています。

Federated Learningの原則に触発され、研究者たちは広く認識されたFederated Averaging(FedAvg)アルゴリズムの変種を考案し、FedOptアルゴリズムに似た要素を注入しました。DiLoCoは内部最適化手法としてAdamWを戦略的に取り入れ、外側の最適化手法としてNesterov Momentumを活用し、従来のトレーニングパラダイムに内在する課題に立ち向かう巧妙な融合を実現しています。

DiLoCoの輝きは、3つの基本的な柱にあります:

1. 限られた共有位置の要件:各ワーカーは共有位置のデバイスを必要としますが、必要な総数は著しく小さく、物流の複雑さが軽減されます。

2. 通信頻度の削減:ワーカーはすべてのステップで通信する必要はなく、𝐻ステップごとに同期するだけで、通信オーバーヘッドを数百または数千に大幅に削減します。

3. デバイスの異質性:クラスタ内のデバイスは同一である必要がありますが、DiLoCoは異なるクラスタが異なるデバイスタイプを使用して運用できる柔軟性を提供します。

DiLoCoのトレーニングプロセスは、事前トレーニングされたモデル𝜃(0)を複数回複製することで行われます。各ワーカーは独自のデータシャードでモデルのレプリカを独立してトレーニングし、𝐻ステップ後に外部グラデーションを平均化し、外部最適化手法がグローバルパラメータコピー𝜃(1)を更新し、それがワーカーに配布されます。このサイクルは𝑇回繰り返され、各レプリカのトレーニングは異なるグローバル位置で異なるアクセラレータを使用して行われます。

C4データセットを用いた実験では、8つのワーカーを使用したDiLoCoは、通信を驚異的な500倍削減し、完全同期最適化と同等のパフォーマンスを達成します。さらに、DiLoCoはワーカー間のデータ分布の変動に対して非常に強い耐性を示し、トレーニング中にリソースの可用性の変化にシームレスに適応します。

要するに、DiLoCoは複数の接続が弱いマシン上でトランスフォーマー言語モデルのトレーニングを分散するための堅牢で革新的な解決策として浮上しています。この画期的なアプローチは、インフラの課題だけでなく、卓越したパフォーマンスと適応性を示し、言語モデルの最適化において大きな飛躍をもたらします。

この投稿は、Google DeepMind Researchers Introduce DiLoCo: A Novel Distributed, Low-Communication Machine Learning Algorithm for Effective and Resilient Large Language Model Training から引用されました。元記事はMarkTechPostです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「FANToMとは:相互作用における機械心理理論のストレステストのためのベンチマーク」

会話型AIでは、心の理論(ToM)を問いに答えることで評価することが重要な基準となっています。しかし、受動的な物語はToMの...

機械学習

自動小売りチェックアウトは、ラベルのない農産物をどのように認識するのか? PseudoAugmentコンピュータビジョンアプローチとの出会い

機械学習とディープラーニングの技術の進歩により、さまざまな次元の自動化が増えています。自動化により、特に小売業におい...

機械学習

ソフトウェア開発の革命:AIとコードのダイナミックなデュオ

「AIとコードの融合により、タスクの自動化、コードの品質向上、開発の加速化によってソフトウェア開発が変革されます」

機械学習

「生成AIをめぐる旅」

私の豊富な経験に深く踏み込んで、全力でGenerative AIを受け入れ、あなたが利益を得るために活用できる貴重な洞察と知識を得...

AIニュース

MLOps(エムエルオプス)とは何ですか?

“`html 機械学習オペレーション(MLOps)は、機械学習(ML)の開発とデプロイメントを結びつけることにより、生産環境...

コンピュータサイエンス

「複雑性理論の50年間の知識の限界への旅」

「問題が解決が困難であることを証明するのはどれほど難しいのか」、メタ複雑性理論家は何十年もこのような質問をしてきまし...