「Google DeepMindの研究者が、チェスの課題に取り組むためのAIの多様性の力を明らかにする:計算問題解決における次の飛躍、AZ_dbの紹介」
Google DeepMindの研究者がチェスの課題に取り組むためのAIの多様性の力を明らかにする
人工知能はその領域をほぼすべての分野に広げ、私たちはほぼすべての生活の分野でその応用を見つけることができます。いくつかの計算タスクでは、AIシステムは人間を上回ることさえあり、技術の進歩において重要な進展を示しています。しかし、AIシステムも人間と同様に間違いやエラーを cometenることがあります、特に未知のシナリオにさらされた場合には。これは、AIが利用可能なデータと計算量に依存しているためです。そのため、現在の研究はこれらの制限を緩和し、さまざまな状況でのAIの適応性と頑健性を向上させることを目指しています。
それにもかかわらず、AIシステムはチェス、ポーカーなどのトリッキーでチャレンジングなゲームでプロのプレーヤーに勝ることがあります。これらのAIシステムは強化学習を利用しており、試行錯誤から学習し、より多くの知識を得ることが可能です。しかし、これらのAIチェスシステムはまだ最適なレベルに到達する必要があります。彼らは攻撃に弱く、幻覚を見ることもあります。
この問題に対処するため、Google DeepMindの研究者たちは、新たな作品「多様化AI:AlphaZeroとのクリエイティブチェスへのアプローチ」を開発しました。彼らは人間の知性に観察される創造的な問題解決メカニズムを人工知能がどのように活用できるかを探求するために、広範な研究を行いました。彼らは異なる高品質のAIエージェントのグループを訓練する方法を考案しました。彼らは各プレーヤーを潜在変数で表現しました。各エージェントはAlphaZero (AZ) に基づいていますが、特別な構造(潜在的)を用いて一緒に動作するのに役立ちます。AlphaZeroはチェスや将棋などの論理ゲームをゼロからプレイすることができます。AlphaZeroはそれらについて事前の知識を持っていなくてもプレイできます。また、創造的な動きも行うことができ、プロの人間に勝つこともできます。
- ウィスコンシン大学マディソン校の研究者たちは、「エベントフルトランスフォーマー:最小限の精度損失でコスト効果のあるビデオ認識手法」というタイトルで、イベントフルトランスフォーマーに基づくビデオ認識の費用対効果の高い手法を提案しています
- 「LLMはナレッジグラフを取って代わるのか? メタリサーチャーが提案する『ヘッド・トゥ・テイル』:大規模言語モデルの事実知識を測るための新たな基準」
- アリババの研究者は、Qwen-VLシリーズを紹介しますこれは、テキストと画像の両方を認識し理解するために設計された大規模なビジョン・ランゲージ・モデルのセットです
研究者は、チェスのパズルを解決するために、AlphaZeroベースのエージェントAZdbとより均一なAZグループを対決させました。彼らは、最も困難なパズル、例えば挑戦的なペンローズの位置などをAZdbが2倍の速度で解決することで、AZグループを上回ったことを発見しました。彼らの研究の中心的な側面は、このAIシステムの融合が、単一のAIシステムの出力と比較して、より多くの革新的なアイデアを集合体として生成することができるかどうかを判断することでした。
研究者は、AIが創造的な問題解決メカニズムからその正確性を向上させることができると強調しました。研究者たちは、AIの問題解決能力に焦点を当てたいと考えました。彼らはこの用語を、問題に対して原則的に新しいかつ以前に知られていなかった解決策を探すことと定義しました。
この研究では、AZdbの異なるチェスのプレイ手法が、集合体としてのパズル解決能力を向上させ、より均一なチームのパフォーマンスを上回ることを実証しました。彼らのチェスゲームの分析からは、AZdb参加者がさまざまなオープニングに特化していることがわかりました。
研究者たちは、このAIシステムが良好なパフォーマンスを示しているにもかかわらず、人間と機械の知能の間にはまだギャップがあると結論付けました。しかし、研究者たちは、この研究がさらなる研究の基盤となることを期待しています。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 研究者たちは、ロボットが手全体を使って複雑な計画を立てることができるようにするAIを開発しました
- 『広範な展望:NVIDIAの基調講演がAIの更なる進歩の道を指し示す』
- 「この新しいAI研究は、事前学習されたタンパク質言語モデルを幾何学的深層学習ネットワークに統合することで、タンパク質構造解析を進化させます」
- スタンフォードの研究者たちは、DSPyを紹介します:言語モデル(LM)と検索モデル(RM)を用いた高度なタスクの解決のための人工知能(AI)フレームワーク
- 「ATLAS研究者は、教師なし機械学習を通じて異常検出を行い、新しい現象を探求しています」
- 「大規模な言語モデルは、多肢選択問題の選択の順序に敏感なのか」という新しいAI研究に答える
- CMU(カーネギーメロン大学)と清華大学の研究者が提案した「Prompt2Model:自然言語の指示から展開可能なAIモデルを生成する汎用メソッド」