Google AI Researchは、大規模言語モデル(LLM)を使用した個別のテキスト生成の一般的なアプローチを提案しています

Google AI Researchは、大規模言語モデル(LLM)を使用したテキスト生成の一般的なアプローチを提案しています

AIを利用したコンテンツ生成を容易にするためにAIベースの技術が台頭してきたことで、個別のテキスト生成が注目されています。特定の対象読者、創作文脈、情報ニーズに適した生成システムを作成するためには、ユーザーが既に書いた文書などの追加の文脈も考慮に入れた個別の応答ができる必要があります。

研究者たちは、レビュー、チャットボット、ソーシャルメディアなどのさまざまな状況でのカスタマイズされたテキストの作成に取り組んできました。既存の多くの研究は、タスクに特化したモデルを提案し、ドメイン固有の特徴や情報に依存しています。どのようにしてどの状況でも使用できる汎用的な戦略を作成するかという問題にはあまり注目されていません。大規模言語モデル(LLM)は、ChatGPT1やBard2などのチャットボットを通じて特にテキスト生成のタスクで注目を集めています。しかし、LLMにそのような機能を持たせる方法については、ほとんど研究が行われていません。

最近のGoogleの研究では、豊富な言語リソースを活用してユニークなコンテンツを生成するための汎用的な手法を提案しています。彼らの研究は、外部ソースを利用した執筆プロセスをより小さなステップに分解する一般的な執筆指示の方法に触発されています。具体的には、研究、ソース評価、要約、統合のような手順に分割しています。

個別のテキスト生成のためにLLMを訓練するため、チームは同様のアプローチを取り、検索、ランキング、要約、合成、生成などのマルチステージマルチタスク構造を採用しています。具体的には、現在のドキュメントのタイトルと最初の行から質問を作成し、ユーザーが以前に書いた文書などの個人的な文脈のセカンダリリポジトリから関連情報を取得します。

次に、関連性と重要性に基づいてランク付けした結果を要約します。検索と要約に加えて、取得した情報をキーエレメントに統合し、それを大規模言語モデルに入力して新しいドキュメントを生成します。

言語教育の分野では、読むことと書くことのスキルは共に発展するという共通の観察があります。さらに、研究によると、読書能力のレベルと量は、著者の認識活動によって測定でき、読解力と相関しています。これらの2つの結果から、研究者たちは、大規模言語モデルに特定のテキストの著者を識別する補助的なタスクを追加することで、読解能力を向上させることを目指したマルチタスキング環境を作成しました。この挑戦をモデルに与えることで、提供されたテキストをより正確に解釈し、より魅力的で個別化された文章を生成できると期待しています。

チームは、電子メールのやり取り、ソーシャルメディアの議論、製品レビューからなる3つの公開データセットを使用して、提案されたモデルの性能を評価しました。マルチステージマルチタスクフレームワークは、すべての3つのデータセットでいくつかの基準モデルに比べて大幅な改善が見られました。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「SageMaker Distributionは、Amazon SageMaker Studioで利用可能になりました」

SageMaker Distributionは、機械学習(ML)、データサイエンス、データ可視化のための多くの人気のあるパッケージを含んだ、...

機械学習

LangFlow | LLMを使用してアプリケーションを開発するためのLangChainのUI

イントロダクション 大規模言語モデルは世界中で大きな話題となっています。ChatGPT、GPT3、Bardなどの大規模言語モデルが登...

データサイエンス

アマゾンの研究者は、深層学習を活用して複雑な表形式のデータ分析におけるニューラルネットワークを強化します

ニューラルネットワークは、異質なカラムを持つ表形式のデータに直面するときに、現代計算の驚異として、重要なハードルに直...

AIニュース

「AIがウクライナの戦場に参戦を望む!」

最近、ウクライナはAI企業のゴールドマインとなっています。世界のテック企業がウクライナに押し寄せ、革新的な人工知能(AI...

AI研究

バイトダンスとUCSDの研究者は、与えられたテキストからオブジェクト/シーンのセットのマルチビュー画像を生成することができるマルチビュー拡散モデルを提案しています

現代のゲームやメディア業界のパイプラインにおいて重要な段階であるにもかかわらず、3Dコンテンツの作成は時間のかかる作業...

機械学習

「教科書で学ぶ教師なし学習:K-Meansクラスタリングの実践」

このチュートリアルでは、K-Meansクラスタリングの主要な概念と実装についての実践的な経験を提供しますK-Meansは人気のある...