Google AIによるコンテキストの力を解き放つ:プレフィックスLMと因果LMの対決におけるインコンテキスト学習

Google AIによるコンテキストの力を解き放つ

トロイの戦争は有名であり、アキレスがプリンス・ヘクターを一度にして永遠に歴史に名を刻んだが、現在、人工知能の急速に進化する風景の中で、学習と理解の向上のための文脈を活用するための探求が中心になっている。プレフィックスLMとカウザルLMという2つの競争相手が、文脈学習に挑むためにリングに登場しました。これらの言語モデルの巨人たちの戦いが続く中、彼らが文脈をどのように扱うかが機械学習の学習結果に大きな差をもたらすことが明らかになっています。

挑戦者と征服者

プレフィックスLMとカウザルLMの両方が、それぞれ独自の理論的枠組みを備えてリングに登場しました。プレフィックスLMは、制約のない注意を身に着け、すべての文脈サンプルが自由にコミュニケーションできるようにしています。それは各サンプルを接頭辞として扱い、戦闘の最初のn位置に完全な注意を払います。

リングのもう一つのコーナーには、カウザルLMが立っており、文脈サンプルと将来の対応物との相互作用を抑制する自己回帰的な注意を持っています。この戦略は線形な学習軌跡を保持し、未来のネタバレが学習プロセスに影響を与えるのを防ぎます。それは焦点を絞ったアプローチですが、本当に文脈の本質を捉えることができるのでしょうか?それはプレフィックスLMのICLへの堅牢なアプローチを打ち負かすことができるのでしょうか?

戦いが始まる

理論と実践を分けるために、ソフトマックストランスフォーマーに頼った合成数値タスクの戦場が証明の場となります。線形回帰、非線形回帰、多クラス分類が戦場を形成し、プレフィックスLMとカウザルLMが対決します。埃が落ち着くと、結果は経験的な証拠の声を反映します。

線形回帰タスクの中で、両モデルのトレーニングエラーは線形の減衰率を示し、学習能力を証明しています。しかし、テストエラーが姿を現すと、情勢は一変します。カウザルLMは著しく大きなテストエラーでつまずき、観衆の関心を引きます。その原因は何でしょうか?カウザルLMの自己回帰的な性質により、文脈の例との相互的な注意が制限されるため、それは最適な結果をもたらしません。

チャンピオンが再び蘇る

経験的な結果が道を照らしている中、プレフィックスLMが文脈学習のチャンピオンとして浮上します。多様な文脈サンプルがコミュニケーションできるようにするオープンなアプローチが鍵となっているようです。線形回帰、非線形回帰、多クラス分類のいずれであっても、プレフィックスLMは一貫してその優越性を示し、その文脈の力が否定できないことを証明しています。

このタイタン同士の戦いが終わると、プレフィックスLMが高くそびえ立ち、包括的な文脈理解の旗を振っています。カウザルLMは勇敢ですが、文脈の競技場での戦略を見直す必要があるかもしれません。この戦いは、プレフィックスLMが今日のチャンピオンであり、AIの戦いの中で将来の別の挑戦者を待っていることを浮き彫りにしています。

PrefixLMの勝利を深く分析するためのより数学的なアプローチに興味がある場合は、研究論文を参照してください。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

「産業界が音声AIを活用して消費者の期待に応えている方法」

急速な技術の進歩のおかげで、消費者は前例のないほどの便利さと効率性に慣れてきました。 スマートフォンを使えば、商品を検...

データサイエンス

SIGGRAPH特別講演:NVIDIAのCEOがLAショーに生成AIをもたらす

生成AIがますますデジタルでハイパーコネクテッドな世界に広がる中、NVIDIAの創設者兼CEOであるJensen Huang氏は、世界最高の...

AI研究

『広範な展望:NVIDIAの基調講演がAIの更なる進歩の道を指し示す』

ハードウェア性能の劇的な向上により、生成型AIが生まれ、将来の高速化のアイデアの豊富なパイプラインが構築され、機械学習...

機械学習

「IoT企業のインテリジェントビデオアナリティクスプラットフォームを搭載したAIがベンガルール空港に到着」

毎年、約3200万人がベンガルール空港、またはBLRを通過し、世界で最も人口の多い国の中で最も忙しい空港の一つです。 このよ...

機械学習

AIの時代のコーディング:ChatGPTの役割と次世代プログラミング

ChatGPTはデジタルの世界を変えつつあり、プログラミングも例外ではありませんプログラマーにどのように助けられ、コーディン...

機械学習

デビッドソンシーングラフにお会いください:高精度なテキストから画像へのAI評価のための革命的なAIフレームワーク

T2Iモデル(テキストから画像を生成するモデル)の評価は困難であり、しばしば質問生成と回答(QG/A)の手法に依存してテキス...