GoogleのAI研究者がPic2Wordを紹介:ゼロショット合成画像検索(ZS-CIR)への新しいアプローチ

GoogleのAI研究者がPic2Wordの新しいアプローチを紹介

画像検索は、正確に表現しようとすると複雑なプロセスです。多くの研究者が、与えられた実際の画像からの最小の損失を確保するために、このプロセスに取り組んでいます。研究者は、テキスト埋め込みを介して画像を表現する方法を見つけました。しかし、テキストを介した画像のフォーマットは、重大な損失と低い精度があるため、課題となっています。この画像表現は、コンピュータビジョンと畳み込みニューラルネットワークの広範なカテゴリに属しています。研究者たちは、最小の損失を持つ合成画像検索(CIR)システムを開発しましたが、この方法の問題は、モデルのトレーニングに大規模なデータセットが必要であることです。

この問題に対する解決策として、Google AIの研究者はPic2Wordという手法を導入しました。これは、xからyへの関数のマッピングと同じです。したがって、画像は単語にマッピングされ、ゼロショットの最小損失が保証されます。この手法の利点は、ラベル付きデータを必要としないことです。ラベルのない画像やキャプション付き画像にも適用できますが、これらはラベル付きデータセットよりも容易に収集できます。研究者たちは、これを畳み込みニューラルネットワークに非常に類似していると考えています。トレーニングセットには「クエリと説明」が含まれます。この情報は検索モデルに渡され、ニューラルネットワークと比較して隠れ層として機能します。この情報を隠れ層を通じて渡すことで、ベースライン画像と出力画像が得られます。この場合、入力と出力画像の間には最小の損失があります。

研究者が提案したコントラスティブ画像事前学習モデルは、テキストと画像の埋め込みを生成する機械学習モデルです。画像はビジュアルエンコーダに渡され、ビジュアル埋め込み空間を生成します。これはさらにテキストエンコーダに処理され、テキストの埋め込みを生成します。これらのビジュアル埋め込みとテキスト埋め込みはさらに処理され、このモデルを介して最小の損失が得られます。この損失はコントラスティブ損失と呼ばれます。テキスト埋め込みは画像の検索に使用され、検索された画像が得られます。画像の出力は異なる画像ですが、内容は元と同じです。したがって、この方法では最小の損失が発生します。ファッション属性合成モデルは、入力画像と同じ画像が出力される機械学習モデルです。このモデルで得られる色も、入力と同じです。

これらの手法は、画像を単語トークンにマッピングするのに非常に役立ちます。研究者は、画像をテキストトークンとして扱うトレーニング済みのCLIPモデルを使用することを提案しており、言語エンコーダが画像特徴とテキストの説明を柔軟に組み合わせることができます。研究者は、Pic2Wordをさまざまな多様なタスクで包括的な分析を行っています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

AIは精神疾患の検出に優れています

重症患者のせん妄検知は、患者のケアや回復に重要な影響を与える複雑なタスクです。しかし、人工知能(AI)と迅速な反応型脳...

AIニュース

国連事務総長、AIに関する高位諮問機関を発足

「国連事務総長アントニオ・グテーレスは、人工知能(AI)に関するリスク、機会、国際的なガバナンスについてのアドバイザリ...

AIニュース

クラウドソーシングされたフィードバックは、ロボットの訓練に役立ちます

「強化学習アプローチは、非専門家のユーザーからのクラウドソーシングされたフィードバックを使用してロボットをトレーニン...

機械学習

マイクロソフトが「TypeChat」をリリース:型を使用して自然言語インターフェースを簡単に構築できるAIライブラリ

MicrosoftのTypeChatライブラリは、大規模な言語モデル(LLM)に基づいたタイプベースの自然言語インターフェースの作成を容...

AI研究

清華大学の研究者たちは、メタラーニングの枠組みの下で新しい機械学習アルゴリズムを紹介しました

深層学習の教師ありタスクにおける最近の成果は、大量のラベル付きトレーニングデータの利用可能性によるものです。しかし、...

機械学習

「生成的なAIアプリケーションと3D仮想世界の構築方法」

成長し成功するためには、組織は特に生成AIや3D仮想世界のような急速に進化する技術領域において、技術スキルの開発に継続的...