様々な地形でサッカーをプレーするための四脚ロボットシステム

Four-legged robot system for playing soccer on various terrains.

「DribbleBot」は、強化学習を用いて、砂、砂利、泥、雪などの様々な地形でサッカーボールを操ることができます。オンボードセンシングとコンピューティングを使用して、ボールの動力学に適応します。

研究者たちは、様々な天然地形でサッカーボールをドリブルするためのシステムであるDribbleBotを作成しました。砂、砂利、泥、雪などが含まれます。これらのサッカーロボットは、人間が捜索・救助ミッションで役立つことがあるかもしれません。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

Google AIがMedLMを導入:医療業界の利用事例に特化したファミリー型基盤モデル

Googleの研究者たちは、現在米国で利用可能な医療業界のために調整されたモデルの基礎であるMedLMを紹介しました。これは、Go...

AIニュース

「Google Chromeは、努力を要さずに読むことができるAIによる記事の要約を表示するようになりました」

Googleは、AIを活用したSearch Generative Experience(SGE)により、再びイノベーションの最前線に立っています。このテック...

AI研究

このAIリサーチはGAIAを紹介します:一般AIの能力の次のマイルストーンを定義するベンチマーク

FAIR Meta、HuggingFace、AutoGPT、GenAI Metaの研究者は、論理思考や多様性のハンドリングなどの基本的なスキルを必要とする...

AI研究

メタとUNC-Chapel Hillの研究者は、「Branch-Solve-Merge」という革新的なプログラムを導入しました:複雑な言語課題における大規模言語モデルの性能を向上させるプログラム

「BRANCH-SOLVE-MERGE(BSM)」は、複雑な自然言語タスクにおける大規模な言語モデル(LLM)を向上させるためのプログラムで...

AI研究

Google AI Researchは、正確な時空間の位置情報と密に関連付けられた意味的に正しい豊富なビデオの説明を取得する注釈手法であるVidLNsを提案しています

ビジョンと言語の研究は、最近、特に静止画とそれに対応するキャプションの関連を確立するデータセットにおいて、著しい進展...

データサイエンス

「埋め込みモデルでコーパス内の意味関係を探索する」

最近、私はいくつかの仲間の学生や学者と話をしてきましたが、彼らは自由形式のテキストの分析に関心を持っていました残念な...