「教師なし学習シリーズ — セルフオーガナイズマップの探求」

Exploring Self-Organizing Maps - Unsupervised Learning Series

Self-Organizing Maps(SOM)の動作原理となぜそれらは有用な教師なし学習アルゴリズムであるかを学びましょう

teckhonc @Unsplash.comによるイメージ

自己組織化マップ(SOM)は、クラスタリングや高次元データの可視化に利用される教師なしニューラルネットワークの一種です。SOMは、ネットワーク内のノード(またはニューロン)が入力データを表現する権利を競う競争学習アルゴリズムを使用してトレーニングされます。

SOMの構造は、各ノードがSOMソリューションの重心を表す重みベクトルに関連付けられる2Dグリッドのノードで構成されています。ノードは、類似したデータポイントを中心に組織化され、基になるデータを表す層を生成します。

SOMは、以下のようなさまざまなタスクで一般的に使用されます:

  • データの可視化
  • 異常検知
  • 特徴抽出
  • クラスタリング

また、SOMは教師なし学習の最もシンプルなニューラルネットワークバージョンとしても視覚化することができます!

最初は混乱するかもしれませんが、自己組織化マップ(またはその発明者にちなんでコホネンマップとも呼ばれる)は、データから基になる構造をマッピングすることができる興味深いアルゴリズムの一種です。次のように説明できます:

  • バックプロパゲーションのない、1層の教師なしニューラルネットワーク。
  • 制約付きのk-meansソリューションであり、ノードが他のノードの移動に影響を与える能力を持つ(k-meansの文脈では、ノードは重心として知られています)。

このブログ記事では、SOMモデルでいくつかの実験を行います。後で、実際のユースケースに自己組織化マップを適用し、アルゴリズムの主な特徴と欠点を確認することができます。

SOMの学習方法の理解

SOMの学習方法を理解するために、まずは2次元のおもちゃデータセットをプロットしてみましょう。

次のデータセットを持つnumpy配列を作成し、その後にプロットします:

import numpy as npX = np.array([[1, 2], [2, 1], [1, 3], [1, 2.5], [3.1, 5], [4, 10], [3.6, 5.4], [2…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

マシンラーニングにおける線形回帰の幾何学的解釈と古典統計学との比較

上記の画像は、最小二乗法(OLS)または線形回帰(古典統計学では同義的に使用される言葉)の幾何学的解釈を示しています見て...

機械学習

誰が雨を止めるのか? 科学者が気候協力を呼びかける

トップの科学者3人が、コンピューティング史上最も野心的な取り組みの一環として、地球のデジタルツインの構築を支援していま...

機械学習

このAI論文では、リーマン幾何学を通じて拡散モデルの潜在空間の理解に深入りします

人工知能や機械学習の人気が高まる中で、自然言語処理や自然言語生成などの主要なサブフィールドも高速に進化しています。最...

機械学習

あなたのリスニングプレイリストに追加するためのトップ8のAIポッドキャスト

機械学習と人工知能の急速な進展する世界では、専門家や愛好家にとって最新の開発や見解にアップデートされることは重要です...

AIテクノロジー

「生成AIに関する一般的な迷信を解明する 網羅的な探求」

イントロダクション テクノロジーは常に変化しており、生成的人工知能は近年の最も革命的な進展の一つです。この革新的な技術...

機械学習

このスペースを見る:AIを使用してリスクを推定し、資産を監視し、クレームを分析する新しい空間金融の分野

金融の意思決定をする際には、ドローン、衛星、またはAIパワードセンサーから取得した大局的な情報を見ることが重要です。 空...