「大規模言語モデルの評価について知っておくべきすべてのこと」

Everything you need to know about evaluating large-scale language models.

オープン言語モデル

パープレキシティから一般的な知能の測定へ

Image generated by the author using Stable Diffusion.

オープンソースの言語モデルがますます利用可能になるにつれ、選択肢の中で迷うことは容易です。

それらのパフォーマンスをどのように判断し、比較するのでしょうか?そして、どのモデルが他のモデルよりも優れていると自信を持って言えるのでしょうか?

本記事では、訓練と評価のメトリクス、一般的なベンチマークと特定のベンチマークを示すことで、モデルのパフォーマンスを明確にする方法について説明します。

もし見逃してしまった場合は、オープン言語モデルシリーズの最初の記事をご覧ください:

オープンソース大規模言語モデルへの優しい導入

なぜみんながラマ、アルパカ、タカなどの動物について話しているのか

towardsdatascience.com

パープレキシティ

言語モデルは、単語の語彙を対象に次に出現する単語を最も確率的に選択するための確率分布を定義します。与えられたテキストに対して、言語モデルは言語内の各単語に確率を割り当て、最も確率の高い単語を選択します。

パープレキシティは、言語モデルが与えられたシーケンス内の次の単語をどれだけ正確に予測できるかを測定します。訓練のメトリクスとして、モデルが訓練セットをどれだけ上手に学習したかを示します。

数学的な詳細には触れませんが、直感的には、パープレキシティを最小化することは、予測された確率を最大化することを意味します。

言い換えると、最良のモデルは新しいテキストを見たときに驚かないものであり、それは予測した単語がシーケンス内で次に来る単語を既に正確に予測していることを意味します。

パープレキシティは有用ですが、単語の意味や使用される文脈を考慮せず、データのトークン化方法に影響を受けます。異なる言語モデルは、異なる語彙とトークナイズの技術を使用してさまざまなパープレキシティスコアを生成するため、直接的な比較が意味をなさなくなります。

パープレキシティは有用ですが限定的なメトリクスです。主にモデルの訓練中の進捗を追跡するためや比較するために使用されます…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

PyTorchを使った効率的な画像セグメンテーション:パート1

この4部作では、PyTorchを使用して深層学習技術を使った画像セグメンテーションをゼロから段階的に実装しますシリーズを開始...

機械学習

「グラフ機械学習 @ ICML 2023」

「壮大なビーチとトロピカルなハワイの風景🌴は、勇敢な科学者たちを国際機械学習会議に出席し、最新の研究成果を発表するこ...

AIニュース

AIを使用して、自分の目で直接拡張現実(AR)を体験してみましょう

技術の飛躍により、Brilliant Labsは最先端のオープンソースARレンズ「Monocle」で拡張現実市場を変革しました。この革新的な...

機械学習

PyTorchモデルのパフォーマンス分析と最適化—Part2

これは、GPU上で実行されるPyTorchモデルの分析と最適化に関する一連の投稿の第二部です最初の投稿では、プロセスとその重要...

AIニュース

「AIは非英語母国語話者に差別的」

最近の研究で、人工知能(AI)について不安な真実が明らかになりました。エッセイや就職応募書類などの作品を検出するために...

機械学習

BentoML入門:統合AIアプリケーションフレームワークの紹介

この記事では、統合されたAIアプリケーションフレームワークであるBentoMLを使用して、機械学習モデルの展開を効率化する方法...