ETHチューリッヒの研究者が、バイオミメティックな腱駆動式ファイブハンドを紹介:高次元自由度の3Dプリンタ対応設計で、器用な手の回転スキルを持つ

ETHチューリッヒの研究者がバイオミメティックな腱駆動式ファイブハンドを紹介

従来のモデルベースの制御手法では、コントローラーはロボットの動的モデルと直接的に対話します。最近の研究では、ロボットの構造がより複雑で生物模倣的になるにつれて、強化学習を通じて確立されたポリシーが使用されるようになっています。特に、多くの指を使用した操作や人間の手に似た操作を必要とする操作では、連携して動く能力はピッキングやプレース倉庫作業、組み立てライン製造、家庭での支援など、いくつかの産業を革新する可能性があります。

ETHチューリッヒとマックス・プランクETH学習システムセンターの最新研究では、Faive Handを巧妙な操作プラットフォームとして紹介しています。人間のような操作に向けた最初のステップとして、チームはそのモデルをRL環境に統合し、ロボット上でクローズドループコントローラーを適用して巧妙な手の球面回転を実現しています。

最も注目されているロボットハンドは、巧妙な操作の研究に現在使用されており、能力のあるロボットはハードウェアとコントローラーの両方が必要です。研究者たちは、より人間らしい手の設計は、ツールや環境中のアイテムとの関わりに適していると提案しています。なぜなら、それらは最初から人々を考慮して作られているからです。人間の例から学ぶ際には、同様のフレームワークを持つロボットに操作活動を伝えることがより簡単です。

Faive Handは、微細な操作の調査のためにバイオミメティクス、腱駆動型のロボットプラットフォームとしてソフトロボティクスラボで作成されました。最新のバージョンの手は、3Dプリントされており、サーボモーターで駆動されているため、大量生産が容易でアクセス可能です。ただし、RLで教えられた他の巧妙な手とは異なり、この手は回転軸の定義のない回転接触ジョイントなどの特徴を組み込んでおり、高次元のロボットハンドの制御をさらに困難にしています。この設計では従来の回転エンコーダーを実装することが困難なため、内部ジョイント角度エンコーダーはまだ開発中ですが、手に含める必要があります。この制約のため、サーボモーターの角度は腱の長さおよび関節角度の推定に使用されます。これらのシミュレーションフレームワークと低レベルコントローラーへの追加により、クローズドループRLで訓練されたポリシーを実際のロボット上で実行することができます。

研究者たちは、IsaacGymシミュレーターで教えられたRLのスキルのゼロショット転送をデモンストレーションすることで、この手の潜在能力を示しています。彼らは、アクチュエーションとセンサーの機能を追加することで、RL sim2realタスクやビヘイビアクローニングなどの他のタスクを改善する予定です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

ヒッティングタイム予測:時系列確率予測の別の方法

正確な予測をする能力は、すべての時系列予測アプリケーションにとって基本的なものですこの目的に従って、データサイエンテ...

AI研究

「NYUとMeta AIの研究者は、ユーザーと展開されたモデルの間の自然な対話から学習し、追加の注釈なしで社会的な対話エージェントの改善を研究しています」

ヒューマンインプットは、社会的な対話モデルを改善するための重要な戦術です。ヒューマンフィードバックを用いた強化学習で...

データサイエンス

ビジネス戦略において機械学習を使用する時と使用しない時の選択

それは明らかな質問ではありません初心者のデータサイエンティストにとっては、すぐに機械学習モデルを推進することは間違い...

AIニュース

あなたの次の夢の役割(2023年)を見つけるのに役立つ、最高のAIツール15選

Resumaker.ai Resumaker.aiは、数分で履歴書を作成するのを支援するウェブサイトです。ポータルは、いくつかのカスタマイズ可...

機械学習

Google AIがMedLMを導入:医療業界の利用事例に特化したファミリー型基盤モデル

Googleの研究者たちは、現在米国で利用可能な医療業界のために調整されたモデルの基礎であるMedLMを紹介しました。これは、Go...

データサイエンス

次元の呪いの真の範囲を可視化する

非常に多くの特徴を持つ観測の振る舞いを視覚化するために、モンテカルロ法を使用する