ETHチューリッヒの研究者が、バイオミメティックな腱駆動式ファイブハンドを紹介:高次元自由度の3Dプリンタ対応設計で、器用な手の回転スキルを持つ
ETHチューリッヒの研究者がバイオミメティックな腱駆動式ファイブハンドを紹介
従来のモデルベースの制御手法では、コントローラーはロボットの動的モデルと直接的に対話します。最近の研究では、ロボットの構造がより複雑で生物模倣的になるにつれて、強化学習を通じて確立されたポリシーが使用されるようになっています。特に、多くの指を使用した操作や人間の手に似た操作を必要とする操作では、連携して動く能力はピッキングやプレース倉庫作業、組み立てライン製造、家庭での支援など、いくつかの産業を革新する可能性があります。
ETHチューリッヒとマックス・プランクETH学習システムセンターの最新研究では、Faive Handを巧妙な操作プラットフォームとして紹介しています。人間のような操作に向けた最初のステップとして、チームはそのモデルをRL環境に統合し、ロボット上でクローズドループコントローラーを適用して巧妙な手の球面回転を実現しています。
最も注目されているロボットハンドは、巧妙な操作の研究に現在使用されており、能力のあるロボットはハードウェアとコントローラーの両方が必要です。研究者たちは、より人間らしい手の設計は、ツールや環境中のアイテムとの関わりに適していると提案しています。なぜなら、それらは最初から人々を考慮して作られているからです。人間の例から学ぶ際には、同様のフレームワークを持つロボットに操作活動を伝えることがより簡単です。
- 拡張版:NVIDIAがビデオ編集のためのMaxineを拡大し、3D仮想会議の研究を披露
- Airbnbの研究者がChrononを開発:機械学習モデルの本番用機能を開発するためのフレームワーク
- NVIDIAとテルアビブ大学の研究者が、効率的な訓練時間を持つコンパクトな100 KBのニューラルネットワーク「Perfusion」を紹介しました
Faive Handは、微細な操作の調査のためにバイオミメティクス、腱駆動型のロボットプラットフォームとしてソフトロボティクスラボで作成されました。最新のバージョンの手は、3Dプリントされており、サーボモーターで駆動されているため、大量生産が容易でアクセス可能です。ただし、RLで教えられた他の巧妙な手とは異なり、この手は回転軸の定義のない回転接触ジョイントなどの特徴を組み込んでおり、高次元のロボットハンドの制御をさらに困難にしています。この設計では従来の回転エンコーダーを実装することが困難なため、内部ジョイント角度エンコーダーはまだ開発中ですが、手に含める必要があります。この制約のため、サーボモーターの角度は腱の長さおよび関節角度の推定に使用されます。これらのシミュレーションフレームワークと低レベルコントローラーへの追加により、クローズドループRLで訓練されたポリシーを実際のロボット上で実行することができます。
研究者たちは、IsaacGymシミュレーターで教えられたRLのスキルのゼロショット転送をデモンストレーションすることで、この手の潜在能力を示しています。彼らは、アクチュエーションとセンサーの機能を追加することで、RL sim2realタスクやビヘイビアクローニングなどの他のタスクを改善する予定です。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 「タンパク質設計の革命:ディープラーニングの改良により成功率が10倍に向上したこのAI研究」
- AIモデルは、患者のがんがどこで発生したかを判断するのに役立つことができます
- UCバークレーの研究者は、Dynalangを紹介しますこれは、未来のテキストおよび画像表現を予測するためにマルチモーダルなワールドモデルを学習するAIエージェントであり、想像されたモデルのロールアウトからの行動を学習します
- MONAI 生成モデル:医療画像の進歩に向けたオープンソースプラットフォーム
- メタAIがオーディオジェネレーションに関するディープラーニングの研究のためのPyTorchライブラリであるAudioCraftをオープンソース化しました
- 新しいAI研究がMONAI Generative Modelsを紹介:研究者や開発者が簡単に生成モデルをトレーニング、評価、展開できるオープンソースプラットフォーム
- このAI研究では、全身ポーズ推定のための新しい2段階ポーズ蒸留を紹介しています