MLモデルのDocker化:デプロイメントガイド

MLモデルのDocker化:デプロイメントガイド

機械学習(ML)の急速に進化する領域では、モデルの開発と同じくらい、モデルをシームレスにパッケージ化して展開する能力が重要です。コンテナ化はこの課題に対する革新的な解決策として登場し、ローカルの開発環境から本番環境へのスムーズなパスを提供しています。コンテナ化のリーディングプラットフォームであるDockerは、MLアプリケーションをポータブルかつ拡張性のあるコンテナにカプセル化するために必要なツールを提供しています。

本記事では、Dockerを使用してシンプルなMLアプリケーションをコンテナ化する手順を段階的に説明し、MLの実践者やエンスージアストにもアクセス可能にしています。あなたのMLモデルを世界と共有したり、より効率的な展開戦略を求めている場合には、このチュートリアルはあなたにDockerを使用したMLワークフローの基本的なスキルを身につけさせるように設計されています。

Dockerとコンテナ化

Dockerは、コンテナ化という、完全なマシン仮想化の軽量な代替手段を利用して、アプリケーションの開発と配布を革新してきたパワフルなプラットフォームです。コンテナ化はアプリケーションとその環境(依存関係、ライブラリ、設定ファイル)をコンテナとしてカプセル化し、ポータブルかつ一貫性のあるソフトウェアの単位にします。これにより、開発者のラップトップから高性能なクラウドベースのサーバまで、どのインフラストラクチャでもアプリケーションが均一かつ一貫して実行されることが保証されます。

従来の仮想マシンが完全なオペレーティングシステムを複製するのに対し、Dockerコンテナはホストシステムのカーネルを共有するため、より効率的で起動が速く、リソースの消費も少なくなります。Dockerのシンプルで明快な文法により、デプロイプロセスによく伴う複雑さを隠し、ワークフローを効率化し、ソフトウェア開発プロセスのライフサイクル管理にDevOpsのアプローチを可能にします。

チュートリアル

以下は、Dockerを使用してシンプルなMLアプリケーションをコンテナ化する手順のステップバイステップのチュートリアルです。

開発環境の設定

始める前に、マシンにDockerがインストールされていることを確認してください。インストールされていない場合は、Dockerのウェブサイトからダウンロードしてください。

シンプルな機械学習アプリケーションの作成

このチュートリアルでは、Scikit-learnライブラリを使用してIrisデータセットでモデルをトレーニングするシンプルなPythonアプリケーションを作成します。

プロジェクトディレクトリの作成

ターミナルまたはコマンドプロンプトを開き、次のコマンドを実行します:

Windowsの場合は、venv\Scripts\activateを使用します。

requirements.txtファイルの作成

アプリケーションに必要なPythonパッケージをリストアップしてください。私たちのシンプルなMLアプリケーションの場合:

機械学習アプリケーションのスクリプトの作成

次のコードをapp.pyというファイルに保存し、ml-docker-appディレクトリに保存してください:

依存関係のインストール

requirements.txtにリストされている依存関係をインストールするために、次のコマンドを実行してください:

アプリケーションの実行

アプリケーションを実行して動作することを確認してください:

コンソールにモデルの精度が表示され、トレーニングされたモデルが含まれるiris_model.pklというファイルが作成されるはずです。

このスクリプトは、データの読み込み、前処理、モデルのトレーニング、モデルの評価、トレーニングされたモデルの保存など、非常に基本的な機械学習タスクのエンドツーエンドのフローを提供します。

Dockerでアプリケーションをコンテナ化する

‘Dockerfile’の作成

ml-docker-appディレクトリのルートに、以下の内容を持つDockerfileという名前のファイルを作成してください:

Dockerイメージのビルド

ターミナルで次のコマンドを実行してDockerイメージをビルドします:

Dockerコンテナの実行

イメージが作成されたら、Dockerコンテナでアプリケーションを実行します:

すべてが正しく設定されていれば、Dockerはコンテナ内でPythonスクリプトを実行し、スクリプトをネイティブで実行したときと同様にモデルの正確性がターミナルに出力されます。

コンテナをDockerHubにタグ付けしてプッシュする

コマンドラインからDocker Hubにログインします

Docker Hubのアカウントを持っている場合は、ローカルマシン上でコマンドラインからログインする必要があります。ターミナルを開き、次のコマンドを実行します:

Docker IDとパスワードの入力を求められます。ログインに成功したら、イメージをDocker Hubリポジトリにプッシュできます。

あなたのDockerイメージにタグを付ける

Docker Hubにイメージをプッシュするには、まずDocker Hubのユーザー名でイメージにタグを付ける必要があります。正しくタグ付けしないと、Dockerはイメージをどこにプッシュするかわかりません。

Docker IDがユーザー名であり、Dockerイメージの名前をml-docker-appにする場合、次のコマンドを実行します:

これにより、ローカルのml-docker-appイメージがusername/ml-docker-appとしてタグ付けされ、Docker Hubリポジトリにプッシュする準備が整います。

イメージをDocker Hubにプッシュする

イメージをDocker Hubにプッシュするには、docker pushコマンドの後にプッシュしたいイメージの名前を指定します:

DockerはイメージをDocker Hubリポジトリにアップロードします。

Docker Hubでプッシュされたコンテナイメージを確認する

Docker Hubリポジトリに移動して、最近プッシュされたイメージを確認できます。

以上です!シンプルな機械学習アプリケーションをコンテナ化し、Docker Hubにプッシュしてどこからでもプルして実行できるようにしました。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

なぜディープラーニングは常に配列データ上で行われるのか?新しいAI研究は、データからファンクタまでを一つとして扱う「スペースファンクタ」を紹介しています

暗黙のニューラル表現(INR)またはニューラルフィールドは、3D座標を3D空間の色と密度の値にマッピングすることによって、3D...

AIニュース

「Amazon Qをご紹介します:ビジネスの卓越性のためのチャットボットをご紹介します!」

今日の速いビジネスの世界では、効果的なコミュニケーションが成功の鍵となります。AmazonはAmazon Qを導入し、データとのや...

データサイエンス

「LLMテクノロジーの理解」

「LLMテクノロジーの進歩を発見しましょうLLMテクノロジーの世界を探求し、AIとNLPの分野における重要な役割を見つけましょう」

AIニュース

「DALL-E3」を詳しく見てみる

詳細な記事でOpenAIのDALL-E 3の進歩について探求しましょうさまざまなプロンプトでAIをテストし、ChatGPTとの高度な統合、優...

データサイエンス

Deep Learningモデルのトレーニングをスーパーチャージ

90%に到達すると精度が初めのほうでは簡単に向上しますが、それ以上の改善を得るためには非常に力を入れなければならないとい...

機械学習

ハスデックスとステーブルディフュージョン:2つのAI画像生成モデルを比較

「HasdxとStable Diffusionは、さまざまなユースケース、コスト、機能などを考慮して、最高のテキストから画像への変換モデル...