「ディープラーニングを用いたナノアレイの開発:特定の構造色を生み出すことができるナノホールアレイを設計する新しいAI手法」

Development of nanoarray using deep learning New AI method for designing nano-hole arrays that can produce specific structural colors.

色の多様性は、2つ以上の色の組み合わせによってさらに増加します。光は微細なナノ構造と相互作用し、複数の色の固有のパターンを作り出します。光スペクトルはまた、穴と相互作用してナノホールアレイと呼ばれるシステムを作り出します。これにより光現象を区別し、構造色を得ることができます。主な目的は、人工的な材料に構造色を埋め込むことです。この色の主な利点は、これらの色が時間の経過とともに劣化しないことです。研究者たちは、指定された色をもたらすナノスケールのアレイを作成するという問題に直面しています。これは広範なコンピュータビジョンのカテゴリに該当します。

重慶大学の研究チームは、これらのナノホールアレイを構造色に向上させることができる新しいシステムを設計しました。彼らはまた、このシステムの設計にさまざまな機械学習モデルを使用しました。研究者たちは、これらのアレイの構造色を予測するためにCSCとCSSという2つのディープラーニングモデルを開発しました。これらのモデルにより、望ましい色の作成につながるナノホールアレイの形成が可能になりました。精度、F1スコア、再現率、適合率、およびパーセント精度などのパラメータは非常に優れていました。研究チームは、これらの結果がこれらのアレイのシミュレーションに基づいていると述べました。これらの結果は実験の現実に変換され、大幅に向上されました。

これらの結果はさらなる評価のために考慮され、テストデータセットに対して精度やF1スコアなどのパラメータが得られました。予測モデルは、以前に使用されたディープラーニングモデルを介して向上させられたデータを予測するために作成されました。このモデルはまた、さまざまな応用と理論の概念の間の理論的なギャップを埋めることを目指しています。ナノホールアレイは、多様なデータで構成される高密度ストレージにも実装されています。

この研究は、ナノアレイの構造色とスペクトルを実装するためのディープラーニングモデルを示しています。この方法のスケーラビリティは、より大きなデータセットを処理することができるため、有望です。さらに、異なる材料に適応する可能性がある複雑な構造を実装することもできます。この研究は、単にナノアレイとそのプラズモニック応用を操作します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

データを持っていますか?SMOTEとGANが合成データを作成する方法

合成データは、開発者やデータサイエンティストにとって大きな課題であるAI/MLモデルの訓練に十分でクリーンなデータを持つこ...

機械学習

あなたのリスニングプレイリストに追加するためのトップ8のAIポッドキャスト

機械学習と人工知能の急速な進展する世界では、専門家や愛好家にとって最新の開発や見解にアップデートされることは重要です...

データサイエンス

「野心的なAI規制に対する力強いプロセス:オックスフォード研究からの3ステップソリューション」

「もしアカウンタブルマネージャーやプロダクトオーナー、プロジェクトマネージャー、もしくはデータサイエンティストで、AI...

人工知能

スタビリティAIの危機 - CEOの論争の中で主要メンバーが辞任!

ロンドンを拠点とするスタートアップ企業であるStability AI Ltd. はかつて画期的なStable Diffusion AIモデルでテック界を驚...

機械学習

AIエージェント:月のジェネレーティブAIトレンド

わずか30分で、実世界の知識を持つLLMを使用して、ノーコードAIエージェントアプリケーションを構築する方法を学びます

機械学習

Japanese AI規制- 仮定はありませんか?それとも何もしない?

バイアスは、任意のモデルに関して規制の対象となる考慮事項の一つです生成AIは、この考えを再び主流に押し上げました私の経...