「ビデオセグメンテーションはよりコスト効果的になることができるのか?アノテーションを節約し、タスク間で一般化するための分離型ビデオセグメンテーションアプローチDEVAに会いましょう」

DEVA, a separate video segmentation approach, can save annotation costs and generalize across tasks. Can video segmentation become more cost-effective?

監視システムがどのように動作し、ビデオのみを使用して個人や車両を識別する方法について考えたことはありますか?また、水中ドキュメンタリーを使用してオルカを識別する方法や、ライブスポーツ分析の方法についても知りたいですか?これらのすべては、ビデオセグメンテーションによって行われます。ビデオセグメンテーションは、オブジェクトの境界、動き、色、テクスチャなど、特定の特徴に基づいてビデオを複数の領域に分割するプロセスです。基本的なアイデアは、ビデオ内の異なるオブジェクトと背景および時間的なイベントを識別し分離し、視覚的なコンテンツのより詳細で構造化された表現を提供することです。

ビデオセグメンテーションのアルゴリズムの利用を拡大することは、多くのデータにラベルを付ける必要があるため、コストがかかる場合があります。特定のタスクごとにアルゴリズムをトレーニングする必要がないように、研究者たちはデカップルドビデオセグメンテーションDEVAを考案しました。DEVAには、個々のフレーム内のオブジェクトを見つけるための専用のパートと、オブジェクトが何であるかに関係なく、時間的なつながりを支援するもう1つのパートがあります。このようにして、DEVAはより柔軟かつ適応性のあるさまざまなビデオセグメンテーションタスクに対応できるようになり、広範なトレーニングデータが必要ありません。

この設計では、興味のある特定のタスクのためのより単純なイメージレベルモデル(トレーニングがより安価)と、一度だけトレーニングする必要がある汎用的な時間伝播モデルを使用します。これら2つのモジュールを効果的に連携させるために、研究者は双方向伝播アプローチを使用します。これにより、異なるフレームからのセグメンテーションの推測をマージし、最終的なセグメンテーションが一貫して見えるようにします。オンラインまたはリアルタイムで行われる場合でも同様です。

上記の画像は、フレームワークの概要を提供しています。研究チームは、まず画像レベルのセグメンテーションをクリップ内の合意に基づいてフィルタリングし、結果を時間的に伝播させます。後の時間ステップで新しい画像セグメンテーションを組み込むために(以前に見たことのないオブジェクト、例えば赤いボックスなど)、伝播された結果をクリップ内の合意と統合します。

この研究で採用されたアプローチは、特定のターゲットタスクへの依存度を減らすために、外部のタスクに関係のないデータを大いに活用しています。これにより、利用可能なデータが限られているタスクに対して、エンドツーエンドの方法と比較してより優れた一般化能力が得られます。さらに、微調整も必要ありません。汎用的な画像セグメンテーションモデルと組み合わせると、このデカップルドパラダイムは最先端のパフォーマンスを示します。それは間違いなく、オープンワールドのコンテキストで最先端の大語彙ビデオセグメンテーションを達成するための初歩的な進歩を表しています!

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

スタンフォード大学の新しい人工知能研究は、説明が意思決定時のAIシステムへの過度の依存を軽減する方法を示しています

近年の人工知能(AI)のブームは、AIの能力によって仕事がより速く、より少ない労力で行われることによって、人間の生活がど...

データサイエンス

「誰も所有していないサービスを修復するために、アンブロックされたものを使う」

「サービスが誰にも所有されていないのは珍しいことではありませんほとんどの文書化もない状態で、Unblockedの魔法を使って、...

AIテクノロジー

AIを活用した「ディープフェイク」詐欺:ケララ州のスキャマーに対する継続的な戦い

最近数ヶ月間、ケララではAIによる「ディープフェイク」技術を悪用した巧妙な詐欺の増加が目撃されています。300人以上が驚異...

機械学習

「RecMindと出会ってください:推薦タスクのための推論、行動、およびメモリを組み合わせた大規模言語モデル技術によって駆動される自律型の推薦エージェント」

人工知能とディープラーニングの人気が高まるにつれて、ほぼすべてのアプリケーションがAIの能力を利用して作業を進めていま...

データサイエンス

埋め込みの類似検索:データ分析の画期的な変革

オラクルは、意味に基づいて文書を取り込み、保存し、取り出すための生成的AI機能を、クラウドデータ分析サービスに追加しました

機械学習

T5 テキストからテキストへのトランスフォーマー(パート2)

BERT [5] の提案により、自然言語処理(NLP)のための転移学習手法の普及がもたらされましたインターネット上での未ラベル化...