「人間の知能の解読:スタンフォードの最新のAI研究は、生来の数の感覚は学びのスキルなのか、自然の贈り物なのかを問いかける」

Decoding Human Intelligence Stanford's Latest AI Research Questions if Innate Sensory Abilities are Skills or Natural Gifts

任意の数量を解読する能力は、数の感覚と呼ばれます。数の感覚は数学的認識において重要です。大量のものを小さなグループに整理したり、数値の量を数えるなど、さまざまな活動が私たちの神経系によって容易に行われますが、これらの数の感覚の出現は不明です。数の表現が人間の脳でどのように出現するのか、よりよく理解する必要があります。

スタンフォード大学の人間中心の人工知能(HAI)研究者は、生物学的にインスピレーションを受けたニューラルアーキテクチャを使用して数の感覚の出現を理解することができると主張しています。大脳皮質の層V1、V2、およびV3と頭頂葉後部溝(IPS)のニューラルアーキテクチャを組み合わせることで、ニューラル表現の変化が理解できます。人間の脳の視覚皮質に類似して、V1、V2、V3、およびIPSはディープニューラルネットワークの視覚処理ストリームです。単一ユニットと分散人口レベルの両方で、学習を伴う数量のニューラルコーディングを調査することができます。

HAIの研究者は、ディープニューラルネットワークの画像の統計的特性により、視覚的な数感が生じ、数量感応性のあるニューロンが畳み込みニューラルネットワークで自発的に出現することを発見しました。彼らは畳み込みニューラルネットワークではなく、生物学的により現実的なアーキテクチャを持つ数-DNN(nDNN)モデルを使用しました。

ほとんどの現実の画像は非記号的な刺激から成り立っています。これらは数量のトレーニングを通じて数量表現にマッピングされ、解釈されます。研究者は、数量のトレーニングによって自発的に調整されたニューロンが変化し、階層性が生じることを発見しました。画像の研究において脳で使用される手順に類似して、研究者は表象類似性分析を実施し、情報処理にわたる数値量の分散表現がどのように出現するかを評価しました。

HAIの研究者は、非記号的な表現を抽象的な記号的表現にマッピングするとされる子供の数値スキルについて実験しました。これらは数値問題解決スキルの発達に重要です。これらの数の感覚と象徴的な数の処理能力は、別々の神経系に依存しています。違いにもかかわらず、子供はしばしば非記号的な表現を使って小さな数を学び、数え上げと算術原理を使って大きな数を学ぶ傾向があると研究は示しています。また、象徴的な数量と非記号的な数量の神経表現の類似性は、頭頂葉、前頭葉、および海馬が算術スキルと正の相関関係にあることを示しています。

神経心理学の研究のほとんどは、認知的な推論の出現を理解するために動物を対象に行われます。しかし、動物の脳には限界があります。理解の方法が実際に人間と同じかどうかは明確ではありません。人間のような理解の方法に関する研究がHAIと同様に行われることに解決策があります。これには、認知的に意味のある数の感覚の発達と数の表現の学習を、認知的および数学的な推論のような活動を行うために深層ニューラルネットワークをトレーニングすることによって理解するための重要な示唆があります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

ドメイン固有アプリケーションのためのLLM細かい調整戦略

「LLMファインチューニングとは何か、LLMをドメイン特化アプリケーションに適応する方法、ファインチューニングの種類などを...

機械学習

がん診断の革命:ディープラーニングが正確に識別し再分類することで、肝臓がんの組み合わせを強化された治療判断につながります

“` 肝臓癌は、肝細胞癌(HCC)と肝内胆管癌(ICCA)を含む原発性肝癌は、それぞれ異なる特徴を持つため、重要な課題を...

AI研究

「スタンフォード大学の研究者が言語モデルの事実性において革新を成し遂げました:自動的な優先順位付けとNLPの進歩によるエラー削減」

スタンフォード大学とUNCチャペルヒルの研究者は、LLMsが生成する事実に反する主張である幻覚として知られる問題に取り組んで...

人工知能

「3年以内に労働力の40%がAIの影響を受ける予測」

「ジェネラティブAIブームによる次の3年間に何を期待すべきか?」

コンピュータサイエンス

小さなオーディオ拡散:クラウドコンピューティングを必要としない波形拡散

2GB以下のVRAMを持つコンシューマーラップトップとGPUでオーディオ波形拡散を用いてモデルをトレーニングし、音を生成する方...

機械学習

宇宙における私たちの位置を理解する

マーティン・ルーサー・キングJr.奨学生であるブライアン・ノードは、機械を訓練して宇宙を探索し、研究における公正を求めて...