「CutLER(Cut-and-LEaRn):人間の注釈なしで物体検出とインスタンスセグメンテーションモデルをトレーニングするためのシンプルなAIアプローチによる出会い」

CutLER A Simple AI Approach for Training Object Detection and Instance Segmentation Models without Human Annotations

オブジェクト検出と画像セグメンテーションは、コンピュータビジョンと人工知能の重要なタスクです。これらは、自動車、医療画像、セキュリティシステムなど、さまざまなアプリケーションで重要です。

オブジェクト検出は、画像やビデオストリーム内のオブジェクトのインスタンスを検出することを目的としています。オブジェクトのクラスと画像内の位置を特定することから成り立っています。目標は、オブジェクトの周囲に境界ボックスを生成し、さらなる分析やビデオストリーム内でのオブジェクトの追跡に使用することです。オブジェクト検出アルゴリズムは、ワンステージとツーステージの2つのカテゴリに分けることができます。ワンステージの方法は速いですが正確性は低く、ツーステージの方法は遅いですが正確性が高いです。

一方、画像セグメンテーションは、画像を複数のセグメントまたは領域に分割することで、各セグメントが異なるオブジェクトまたはオブジェクトの一部に対応するようにすることを目的としています。目標は、画像内の各ピクセルにセマンティッククラス(「人」、「車」、「空」など)をラベル付けすることです。画像セグメンテーションアルゴリズムは、セマンティックセグメンテーションとインスタンスセグメンテーションの2つのカテゴリに分けることができます。セマンティックセグメンテーションは、各ピクセルにクラスラベルを付けることを目的としていますが、インスタンスセグメンテーションは、画像内の個々のオブジェクトを検出してセグメント化することを目的としています。

オブジェクト検出と画像セグメンテーションの両方のアルゴリズムは、深層学習のアプローチによって最近大きく進化しています。ピクチャ入力の階層的表現を学習する能力があるため、畳み込みニューラルネットワーク(CNN)はこれらの問題に対する選択肢となっています。ただし、これらのモデルのトレーニングには、オブジェクトボックス、マスク、ローカライズされたポイントなどの専門的な注釈が必要であり、これは困難で時間がかかる作業です。オーバーヘッドを考慮しない場合、COCOデータセットの164K枚の画像に対して、80のクラスのマスク付きの手動注釈を行うには28K時間以上が必要でした。

新しいアーキテクチャであるCut-and-LEaRn(CutLER)を用いて、著者たちはこれらの問題に対処しようとします。CutLERは、人間のラベルなしでトレーニングできる教師なしのオブジェクト検出とインスタンスセグメンテーションモデルを研究することを目的としています。この手法は、3つのシンプルなアーキテクチャとデータに依存しないメカニズムで構成されています。提案されたアーキテクチャのパイプラインを以下に示します。

出典: https://arxiv.org/pdf/2301.11320.pdf

CutLERの著者は、まず、自己教師ありの事前学習ビジョントランスフォーマーViTによって計算された特徴に基づいて、各画像に対して複数の初期ラフマスクを自動生成するツールであるMaskCutを紹介しています。MaskCutは、Normalized Cuts(NCut)などの現在のマスキングツールの制限に対処するために開発されました。実際、NCutの応用は画像内の単一のオブジェクト検出に制限されることが多く、これは大きな制約となる場合があります。そのため、MaskCutは、マスクされた類似度行列に反復的にNCutを適用することで、画像ごとに複数のオブジェクトを発見するように拡張しています。

次に、著者たちは、これらのラフマスクを使用してディテクタをトレーニングするための簡単なロスドロップ戦略を実装しています。これらのラフマスクでトレーニングされたディテクタは、地面の真実を洗練し、より正確なマスク(およびボックス)を生成することができます。したがって、モデルの予測に対する自己トレーニングの複数のラウンドにより、モデルは局所的なピクセルの類似性に焦点を当てることから、全体的なオブジェクトのジオメトリを考慮することに進化し、より正確なセグメンテーションマスクを生成することができます。

以下の図は、提案されたフレームワークと最先端のアプローチとの比較を示しています。

出典: https://arxiv.org/pdf/2301.11320.pdf

これは、正確で一貫性のある物体検出と画像セグメンテーションのための新しいAIツール、CutLERの概要でした。

このフレームワークに興味がある場合や詳細を知りたい場合は、論文とプロジェクトページへのリンクを見つけることができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

イノベーションを推進するための重要なツール:データレイクハウスにおけるジェネラティブAIの向上

LLMおよびジェネレーティブAIアプリの登場により、データは全エコシステムの中心的な要素となっています本記事では、データレ...

データサイエンス

AIのマスタリング:プロンプトエンジニアリングソリューションの力

私と一緒にAIプロンプトエンジニアリングの素晴らしさを発見しましょう!ユーモアのある効果的なプロンプトの制作によって、A...

コンピュータサイエンス

ジェイソン・アーボン:「百万年後、超パワフルなコンピュータは我々の時代のテスターたちを称えるでしょう」

「Jason Arbonと一緒に、テストにおけるAIの使用、いくぶん不公平なマニュアルQA vs. 自動化QAの闘い、新しいテクノロジーの...

機械学習

「AIとMLが高い需要になる10の理由」 1. ビッグデータの増加による需要の増加:ビッグデータの処理と分析にはAIとMLが必要です 2. 自動化の需要の増加:AIとMLは、自動化されたプロセスとタスクの実行に不可欠です 3. 予測能力の向上:AIとMLは、予測分析において非常に効果的です 4. パーソナライズされたエクスペリエンスの需要:AIとMLは、ユーザーの行動と嗜好を理解し、パーソナライズされたエクスペリエンスを提供するのに役立ちます 5. 自動運転技術の需要の増加:自動運転技術の発展にはAIとMLが不可欠です 6. セキュリティの需要の増加:AIとMLは、セキュリティ分野で新たな挑戦に対処するために使用されます 7. ヘルスケアの需要の増加:AIとMLは、病気の早期検出や治療計画の最適化など、医療分野で重要な役割を果たします 8. クラウドコンピューティングの需要の増加:AIとMLは、クラウドコンピューティングのパフォーマンスと効率を向上させるのに役立ちます 9. ロボティクスの需要の増加:AIとMLは、ロボットの自律性と学習能力を高めるのに使用されます 10. インターネットオブシングス(IoT)の需要の増加:AIとMLは、IoTデバイスのデータ分析と制御に重要な役割を果たします

「2024年におけるAIとMLの需要急増を促している10の主要な要因を発見し、さまざまな産業で探求しましょう技術の未来を探索し...

人工知能

「DALL·E 3の最も優れた20の使用例とプロンプト」

OpenAIは、テキストから画像を生成するプラットフォームであるDALL-E 3の大規模なアップデートを発表しましたこのアップデー...

人工知能

「Bard」を活用するための10の役立つ方法

「アイデアのブレストから旅行のスケジュール作成まで、Bardがあなたの仕事を手助けする10の方法をチェックしてみてください」