KNNクラシファイアにおける次元の呪い

KNNクラシファイヤーにおける次元の呪縛

クラスタリングアルゴリズムにおける「高次元性」の問題の影響を探求する

出典: https://scipy-lectures.org/packages/scikit-learn/auto_examples/plot_iris_knn.html

この記事では、KNNアルゴリズムにおける次元の呪いの影響を探求していきます。KNNアルゴリズムの概要と、その呪い自体の適切な理解から始めます。

この記事は誰に役立つのでしょうか? 機械学習やクラスタリングアルゴリズムに精通している方、またそこに向かっている全ての方に役立ちます。

この記事はどの程度高度な内容ですか? この記事は主に経験豊富なエンジニアを対象としています。

前提条件: この記事ではKNNアルゴリズムについて簡単に説明しますが、詳細な情報は以下の記事を参照してください。

KNNアルゴリズム: 何をするのか?いつ使うのか?なぜ使うのか?どのように使うのか?

KNN: K最近傍法は、機械学習を始めるための基本的なアルゴリズムの一つです。機械学習モデルは、…

towardsdatascience.com

KNNの簡単な紹介

次元の呪いに入る前に、KNNアルゴリズムを簡単に説明します。基本的な意味で、KNNアルゴリズムは似たアイテムを一緒にまとめ、文字通り「最近の隣人」を見つけます。

以下のように機能します:ラベル付きのデータセットが与えられた場合、新しいデータポイントを分類する場合、KNNは特徴空間でK個の最近傍点を特定します。新しいポイントに割り当てられるクラスまたは値は、これらのK個の隣人からの多数派投票(分類の場合)または平均(回帰の場合)によって決定されます。通常、距離尺度によって「最近」が定義されますが、一般的にはユークリッド距離が使用されます。

画像の著者

KNNは、特徴空間内の類似したインスタンスが類似した結果を持つ傾向があるという仮定の下で動作します。これは、非パラメトリックかつインスタンスベースのアルゴリズムであり、基礎となるデータ分布に関しては仮定しないため、予測にはデータセット全体を利用します。このシンプルさが人気の一因ですが、次元の呪いに敏感になることがあります…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「Ntropyの共同創設者兼CEO、ナレ・ヴァルダニアンについて - インタビューシリーズ」

「Ntropyの共同創設者兼CEOであるナレ・ヴァルダニアンは、超人的な精度で100ミリ秒以下で金融取引を解析することを可能にす...

人工知能

ファイデムのチーフ・プロダクト・オフィサー、アルパー・テキン-インタビューシリーズ

アルパー・テキンは、FindemというAI人材の獲得と管理プラットフォームの最高製品責任者(CPO)ですFindemのTalent Data Clou...

データサイエンス

「2023年にデータサイエンスFAANGの仕事をゲットする方法は?」

データサイエンスは非常に求められる分野となり、FAANG(Facebook、Amazon、Apple、Netflix、Google)企業での就職は大きな成...

人工知能

「LeanTaaSの創設者兼CEO、モハン・ギリダラダスによるインタビューシリーズ」

モーハン・ギリダラダスは、AIを活用したSaaSベースのキャパシティ管理、スタッフ配置、患者フローのソフトウェアを提供する...

人工知能

「ジンディのCEO兼共同創設者、セリーナ・リー― インタビューシリーズ」

「Celina Leeは、ZindiのCEO兼共同創設者であり、アフリカのデータサイエンティスト向けの最大の専門ネットワークです Celina...

人工知能

「ジャスティン・マクギル、Content at Scaleの創設者兼CEO - インタビューシリーズ」

ジャスティンは2008年以来、起業家、イノベーター、マーケターとして活動しています彼は15年以上にわたりSEOマーケティングを...