Concrete MLと出会ってください:プライバシーの保護と安全な機械学習を可能にするオープンソースのFHEベースのツールキット

Concrete ML an open-source FHE-based toolkit enabling privacy protection and secure machine learning.

人工知能と機械学習は、過去数年間で驚異的な生産性の向上を示しています。機械学習は、すべてのプライバシーと機密性の手段を保持することによって、高品質のデータを持つことに関連しています。問題を解決するために、プライバシーと機械学習の利点のギャップを埋めることは非常に重要です。現在のデータ駆動型の時代において、個人のプライバシーを保護することは非常に困難になっています。機械学習が現在非常に一般的になっているため、その影響には注意を払い、クライアントの情報を保護することが必要です。Fully Homomorphic Encryption(FHE)などの新しい進歩によって、ユーザー情報の保護と機密性の維持が成功裏に行われています。

Zamaの機械学習研究者たちは、Concrete-MLというオープンソースのライブラリを開発しました。このライブラリは、MLモデルをそのFHE相当物にスムーズに変換することを可能にします。彼らは最近、Google Tech TalkでConcrete MLを発表しました。ユーザーに関連するデータの一部がクラウドに送信されるとき、ホモモーフィック暗号化スキームがそのデータを保護します。データの安全性を考慮して、操作とすべてのアクションが暗号化されたデータ上で行われます。Fully Homomorphic Encryptionは例を使って説明することができます。例えば、ある都市で心臓の問題を抱える患者に関する記述的な分析を行いたいとする医師がいます。その都市の病院の内部チームは、プライバシーの問題のためにデータを公開することができないかもしれませんが、そのデータは安全にデータベースに保存されています。ここで、FHEは機密データを暗号化し、データを安全に計算することができます。

Concrete MLは、The Concrete Frameworkの上に開発されたオープンソースのツールキットです。これは、研究者やデータサイエンティストが機械学習モデルをその同一のホモモーフィックユニットに自動的に変換するのを支援します。Concrete MLの主な特徴は、暗号技術についての事前知識がなくても、MLモデルをFHE相当物に変換する能力です。Concrete MLを使用することで、ユーザーは異なるサービスプロバイダーとの信頼性のない会話を行うことができ、MLモデルの展開を妨げることなくデプロイすることができます。データとユーザーのプライバシーは保持され、MLモデルは信頼性のないサーバー上でも本番環境に配置されます。

直接暗号化データ上で計算を行うことを許可する暗号化戦略であるFHEを使用すると、独自の機能を持つアプリケーションを開発することができます。FHEは復号化の必要性を必要としません。Concrete MLは、Scikit-learnとPyTorchからいくつかの人気のあるアプリケーションユーザーインターフェース(API)を使用しています。Concrete MLモデルは次のように設計されています。

  1. モデルのトレーニング – モデルはScikit-learnライブラリを使用して暗号化されていないデータ上でトレーニングされます。Concrete MLは推論中にのみ整数を使用します。FHEは整数上でのみ動作するためです。
  2. 変換とコンパイル – このステップでは、モデルがConcrete-Numpyプログラムに変換され、量子化されたモデルがFHE相当物にコンパイルされます。
  3. 推論 – 暗号化されたデータ上で推論が行われます。モデルをサーバーに展開する際、クライアントがデータを暗号化し、サーバーが安全な処理を行い、クライアントが復号化します。

Concrete MLは、完全なプライバシーと信頼性を持って機械学習を使用するための素晴らしい開発です。現在のところ、Concrete MLの唯一の制限は、サポートされている精度の16ビット整数でのみ実行できることですが、プライバシーの保護には有望です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

MLがDevOpsと出会うとき:MLOpsの理解方法

この記事では、機械学習とDevOpsの統合、モデルの管理、ベストプラクティス、成功した解決策について取り上げています

データサイエンス

「拡散を通じた適応学習:先進のパラダイム」

イントロダクション 教育と機械学習のダイナミックな風景において、適応学習を通じた拡散はパラダイムシフトを示しています。...

人工知能

PaaS4GenAI Oracle Integration CloudからIBM Cloudプラットフォーム上のGenerative AI (WatsonX)との接続

「オラクル統合クラウドとIBMクラウドプラットフォーム上のGenerative AI WatsonXを活用したマルチクラウド接続のソリューシ...

AI研究

この中国のAI研究は、マルチモーダルな大規模言語モデル(MLLMs)の幻覚を修正するために設計された革新的な人工知能フレームワークである「ウッドペッカー」を紹介します

中国の研究者たちは、マルチモーダルな大規模言語モデル(MLLM)における幻覚の問題に対処するために、Woodpeckerという新し...

機械学習

「このAIニュースレターはあなたが必要とするもの全てです #69」

Googleは、MicrosoftやAdobeといった企業に続き、彼らが提供するAIサービスの利用者を知的財産権侵害に関する訴訟から保護す...