「CMUの研究者がBUTD-DETRを導入:言語発話に直接依存し、発話で言及されるすべてのオブジェクトを検出する人工知能(AI)モデル」

CMU researchers introduce BUTD-DETR an AI model that directly relies on language speech to detect all objects mentioned in the speech.

画像内のすべての「オブジェクト」を見つけることは、コンピュータビジョンの基礎です。カテゴリの語彙を作成し、この語彙のインスタンスを認識するモデルを訓練することで、「オブジェクトとは何か?」という問いに回答することができます。これらのオブジェクト検出器を実用的なホームエージェントとして使用しようとすると、問題が発生します。モデルは、2Dまたは3Dの設定で指示的な発話を視覚的に関連付ける場合、事前に訓練された検出器が提供するオブジェクトの候補のプールから参照されたアイテムを選択することを学習します。その結果、検出器は、椅子、椅子の脚、または椅子の脚の先端など、より詳細な視覚的なものに関連する発話を見逃す場合があります。

研究チームは、ボトムアップ、トップダウンの検出トランスフォーマー(BUTD-DETR、発音:ビューティーデター)を、口述発話に直接条件付け、言及されたすべてのアイテムを見つけるモデルとして提案します。 BUTD-DETRは、発話がオブジェクトカテゴリのリストである場合、通常のオブジェクト検出器として機能します。モデルは、画像と言語のペアリングにトレーニングされ、発話で言及されたすべてのアイテムの境界ボックス、および固定語彙のオブジェクト検出データセット付きのタグが付いています。ただし、いくつかの調整を加えることで、BUTD-DETRは3Dポイントクラウドと2D画像で言語フレーズをアンカーすることもできます。

プールからランダムに選択する代わりに、BUTD-DETRは言語的および視覚的な入力に注意を払ってオブジェクトボックスをデコードします。ボトムアップでタスク非依存の注意は、アイテムの位置を特定する際に細部を見落とす場合がありますが、言語指向の注意がそのギャップを埋めます。モデルには、シーンと口述発話が入力として使用されます。既にトレーニングされた検出器を使用してボックスの提案が抽出されます。次に、パーカテゴリ固有のエンコーダを使用して、シーン、ボックス、および音声から視覚的な、ボックス、および言語的なトークンが抽出されます。これらのトークンは、お互いに注意を払うことで、その文脈内で意味を持ちます。洗練された視覚チケットは、多くのストリームにわたってボックスをデコードし、広がります。

オブジェクト検出の実践は、検出されるもののカテゴリラベルであるという、根拠のある指示的な言語の例です。研究者は、オブジェクト検出を、検出器の語彙から特定のオブジェクトカテゴリをランダムに選択し、それらをシーケンスして合成発話を生成することによって、検出促進の根拠として使用します(たとえば、「ソファ、人、椅子」といったもの)。これらの検出のヒントは、補足的な監督情報として使用され、目標は、シーン内で指定されたカテゴリラベルのすべての出現を見つけることです。モデルは、視覚的な入力例がないカテゴリラベル(上記の例では「人」など)に対してボックスの関連付けを行わないように指示されます。このアプローチでは、単一のモデルが言語を根拠にし、オブジェクトを認識することができ、両方のタスクのための同じトレーニングデータを共有します。

成果

開発されたMDETR-3Dと同等のものは、以前のモデルと比較して性能が低いですが、BUTD-DETRは3D言語グラウンディングで最先端のパフォーマンスを実現しています。

BUTD-DETRは2Dドメインでも機能し、変形可能な注意などのアーキテクチャの向上により、MDETRと同等のパフォーマンスを達成すると同時に、収束時間を2倍に短縮します。このアプローチは、2Dおよび3Dのグラウンディングモデルを統一する一歩を踏み出しており、少ない修正で両方の次元で機能するように簡単に適応できます。

3D言語グラウンディングのすべてのベンチマークでは、BUTD-DETRは最先端の手法(SR3D、NR3D、ScanRefer)に比べて大幅なパフォーマンス向上を示しています。さらに、ECCVのLanguage for 3D Scenesワークショップで行われたReferIt3Dコンペティションでは、最優秀の投稿であった。ただし、大規模なデータでトレーニングされた場合、BUTD-DETRは2D言語グラウンディングのベンチマークでも最高の既存手法と競合する可能性があります。具体的には、研究者の効率的な変形可能な注意により、2Dモデルは最先端のMDETRと比べて収束時間を2倍速くすることができます。

以下のビデオでは、完全なワークフローについて説明しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

HTMLの要約:IIoTデータのプライバシー保護のためのGANとDPのハイブリッドアプローチ

匿名化は、産業用インターネット・オブ・シングス(IIoT)データの取り扱いにおいて重要な問題です。機械学習(ML)アプリケ...

機械学習

マルチアームバンディットを用いた動的価格設定:実践による学習

意思決定の問題の広大な世界において、一つのジレンマが特に強化学習の戦略によって所有されています:探索と活用スロットマ...

機械学習

「Co-BioNetに会ってください:モナッシュ大学の敵対的AIシステムが医療画像解析を革新し、広範な人間の注釈なしで精度を向上させています」

ディープラーニングは医療人工知能を大幅に進化させました。しかし、特に画像セグメンテーションのタスクにおいて、訓練に多...

人工知能

AI生成コンテンツ:クリエイターにとってこれは何を意味するのか?

「ジェネレーティブAIはコンテンツクリエイターにどのような影響を与えるのか?AIによる生成コンテンツの限界、課題、および...

機械学習

がん診断の革命:ディープラーニングが正確に識別し再分類することで、肝臓がんの組み合わせを強化された治療判断につながります

“` 肝臓癌は、肝細胞癌(HCC)と肝内胆管癌(ICCA)を含む原発性肝癌は、それぞれ異なる特徴を持つため、重要な課題を...