CMUの研究者がMultiModal Graph Learning(MMGL)を導入「複数の多様な隣接情報から関係構造を持つ情報を抽出するための新たなAIフレームワーク」としています

CMUの研究者がMultiModal Graph Learning(MMGL)を導入!「複数の多様な隣接情報から関係構造を抽出する新たなAIフレームワーク」として紹介

多モーダルグラフ学習は、機械学習、グラフ理論、およびデータフュージョンの概念を組み合わせた多様なデータソースとその相互接続を含む複雑な問題を解決するための多学科的な分野です。多モーダルグラフ学習は、視覚データとテキスト情報を組み合わせることで画像の記述的なキャプションを生成することができます。クエリに基づいて関連する画像やテキストドキュメントを検索する精度を向上させることができます。多モーダルグラフ学習は、カメラ、LiDAR、レーダー、GPSなどのさまざまなセンサからのデータを組み合わせて知覚を向上させ、適切な運転の決定をするために自律型車両でも使用されています。

現在のモデルは、事前学習された画像エンコーダとLMを使用して、与えられたテキスト/画像上で画像/テキストを生成することに依存しています。入力として、明確な1対1のマッピングを持つペアモダリティの方法を使用します。多モーダルグラフ学習の文脈では、モダリティとはデータおよび情報ソースの異なるタイプまたはモードを指します。各モダリティは、データの特定のカテゴリや側面を表し、異なる形式を取ることができます。問題は、これらのモデルをモダリティ間の多対多のマッピングに適用するときに発生します。

カーネギーメロン大学の研究者は、生成タスク用の多モーダルグラフ学習の一般的かつ体系的なフレームワークを提案しています。彼らの手法は、それ自体との関係構造を持つ複数の多モーダルな近傍から情報を取得することを含みます。彼らは、複雑な関係をグラフとして表現し、モダリティの数とモダリティ間の複雑な関係を柔軟に変化させることができます。

彼らのモデルは、隣接エンコーディングを抽出し、グラフ構造と組み合わせ、パラメータ効率の良い微調整を行います。多対多のマッピングを完全に理解するために、チームはテキストと埋込みを使用したセルフアテンション、単に埋め込みを使用したセルフアテンション、および埋込みを使用したクロスアテンションなどの近傍エンコーディングモデルを研究しました。彼らは、ラプラシアン固有ベクトル位置エンコーディング(LPE)とグラフニューラルネットワークエンコーディング(GNN)を使用して順序位置エンコーディングを比較しました。

微調整は、通常、ターゲットタスクに特化したラベル付きデータが必要です。関連するデータセットを既に持っているか、合理的なコストで入手できる場合、微調整はゼロからモデルをトレーニングするよりも費用効果が高い場合があります。研究者は、自己注意とテキストおよび埋め込みを使用したSA-TEのためのプレフィックスチューニングとLoRA、埋め込みモデルとのクロスアテンションのためのフラミンゴスタイルの微調整を使用します。彼らは、SA-TE近傍エンコーディングでほぼ4倍少ないパラメータを使用するプレフィックスチューニングがコストを低下させることを見つけました。

彼らの研究成果は、将来のMMGL研究とその分野での探求のための基礎を築くための深い分析です。研究者は、将来の多モーダルグラフ学習の範囲は期待され、機械学習、データ収集の進歩、およびさまざまなアプリケーションでの複雑な多モーダルデータの取り扱いの必要性によって大幅に拡大すると述べています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「OpenAIが企業向けAIの扉を開放」

「ビジネスの自動化、カスタマイズ、コンプライアンスにおいて、OpenAIのエンタープライズソリューションを活用してください...

機械学習

「ソフトウェア開発者のための機械学習フレームワークの探求」

この記事では、ソフトウェア開発における機械学習フレームワークの重要性を探求し、人気のあるフレームワークについての洞察...

機械学習

学習曲線の航行:AIの記憶保持との闘い

人工知能(AI)の境界が絶えず拡大するにつれて、研究者たちはこの分野の最大の課題の1つである記憶喪失と格闘していますAIの...

人工知能

「DIRFAは、オーディオクリップをリアルなデジタル顔に変換する」

人工知能とマルチメディアコミュニケーションの進歩の中で、シンガポールの南洋理工大学(NTU Singapore)の研究チームが画期...

機械学習

Google AIは、MediaPipe Diffusionプラグインを導入しましたこれにより、デバイス上で制御可能なテキストから画像生成が可能になります

最近、拡散モデルはテキストから画像を生成する際に非常に成功を収め、画像の品質、推論のパフォーマンス、および創造的な可...

AI研究

「スタンフォード大学の新しいAI研究は、言語モデルにおける過信と不確実性の表現の役割を説明します」

自然言語システムが日常のシナリオでますます普及するにつれて、これらのシステムは適切に不確実性を伝える必要があります。...