中国の新しいAI研究は、ハードウェアラスタライゼーションをサポートし、前例のないレンダリング速度を実現する4Dポイントクラウド表現である4K4Dを提案しています
中国の新たなAI研究:4K4Dはハードウェアラスタライゼーションをサポートし、前例のない速度でレンダリングする4Dポイントクラウド表現の提案
Dynamic view synthesisは、キャプチャされたビデオから動的な3Dシーンを再構築し、没入型の仮想再生を作成するプロセスです。このプロセスは、コンピュータビジョンとグラフィックスの分野で長年の研究問題であり、VR / AR、スポーツ放送、芸術的パフォーマンスキャプチャの分野で大きな約束を持っています。
動的な3Dシーンの表現には、テクスチャつきメッシュシーケンスを使用した従来の方法がありますが、これらの方法は複雑で計算コストが高く、リアルタイムアプリケーションでは実用的ではありません。
最近では、いくつかの手法が動的な視点合成に優れた結果を生み出しており、印象的なレンダリング品質を示しています。ただし、高品質のイメージをレンダリングする際のレイテンシーを改善する必要があるという点では、まだ改善の余地があります。この研究論文では、4K4Dという4Dポイントクラウド表現を紹介し、ハードウェアラスタ化をサポートし、迅速なレンダリングを可能にします。
- ドイツの研究チームがDeepMBを開発しました MSOTを介して高品質でリアルタイムなオプトアコースティックイメージングを提供するディープラーニングフレームワーク
- 材料研究を革新するための機械学習の活用
- CMUの研究者がMultiModal Graph Learning(MMGL)を導入「複数の多様な隣接情報から関係構造を持つ情報を抽出するための新たなAIフレームワーク」としています
4K4Dは、4つのフィーチャーのベクトルとして、4Dグリッドベースで3Dシーンを表現します。このような表現では、グリッド内のポイントを規則的にし、最適化しやすくします。モデルはまず、入力ビデオのオブジェクトのジオメトリと形状をスペースカービングアルゴリズムとニューラルネットワークを使用して表現し、ポイントクラウドから3Dシーンを表現する方法を学習します。次に、ポイントクラウド表現をレンダリングするために、差分深度ピーリングアルゴリズムが開発され、レンダリングスピードを向上させるためにハードウェアラスタイザが活用されます。
レンダリングスピードを向上させるために、次の加速技術を適用します:
- 一部のモデルパラメータは事前に計算され、メモリに格納され、グラフィックスカードがシーンを高速にレンダリングできるようにします。
- モデルの精度を32ビット浮動小数点から16ビット浮動小数点に減らします。これにより、パフォーマンスの損失を見えることなく、FPSが20増加します。
- 最後に、差分深度ピーリングアルゴリズムに必要なレンダリングパスの数を減らし、品質には見えない変化があるまま、FPSが20増加します。
研究者は、4K4DのパフォーマンスをDNA-Rendering、ENeRF-Outdoorなどの複数のデータセットで評価しました。研究者の3Dシーンのレンダリング方法は、前者のデータセットでは1080pで400 FPS以上、後者のデータセットでは4Kで80 FPSでレンダリングすることができます。これは、最先端のリアルタイム動的視点合成方法ENeRFよりも30倍以上高速であり、さらに優れたレンダリング品質も提供しています。ENeRF Outdoorデータセットは、複数のアクターを含む比較的困難なものですが、4K4Dは他のモデルと比較しても優れた結果を生み出し、一部のレンダリングで画像の端周りに黒いアーティファクトが発生する他のモデルと比較しても、ぼやけた結果を生み出しました。
まとめると、4K4Dは、4K解像度でのリアルタイム視点合成において、遅いレンダリングスピードの問題に対処する新しいメソッドです。これは、状態-of-the-artのレンダリング品質を実現し、レンダリングスピードを30倍以上向上させるニューラルポイントクラウドベースの表現です。ただし、長時間のビデオに対する高いストレージ要件やフレーム間のポイント対応の確立など、いくつかの制限事項があり、研究者は将来の作業でこれらに対処する予定です。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- KAISTの研究者らが「SyncDiffusion」を提案:知覚的な類似度の損失関数から勾配降下法を使って複数の拡散を同期させるためのプラグアンドプレイモジュールです
- 「ユーレカ!NVIDIAの研究によるロボット学習の新たな進展」
- 研究者たちは、AIシステムを取り巻くガードレールはあまり堅牢ではないと述べています
- UCバークレーの研究者たちは、「リングアテンション:トランスフォーマーのメモリ要件を削減するためのメモリ効率の良い人工知能アプローチ」という提案を行っています
- 「マイクロソフトの研究者たちはDeepSpeed-VisualChatを提案:スケーラブルなマルチモーダル言語モデルの訓練の大きな進歩」というタイトルで、記事の内容を日本語に翻訳すると、以下のようになります
- このAI研究は、事前のイメージングなしで物体のエッジを検出するためのノイズ耐性のある方法を開発しました
- 「生成AIからの社会的および倫理的リスクの評価」