中国の新しいAI研究は、ハードウェアラスタライゼーションをサポートし、前例のないレンダリング速度を実現する4Dポイントクラウド表現である4K4Dを提案しています

中国の新たなAI研究:4K4Dはハードウェアラスタライゼーションをサポートし、前例のない速度でレンダリングする4Dポイントクラウド表現の提案

Dynamic view synthesisは、キャプチャされたビデオから動的な3Dシーンを再構築し、没入型の仮想再生を作成するプロセスです。このプロセスは、コンピュータビジョンとグラフィックスの分野で長年の研究問題であり、VR / AR、スポーツ放送、芸術的パフォーマンスキャプチャの分野で大きな約束を持っています。

動的な3Dシーンの表現には、テクスチャつきメッシュシーケンスを使用した従来の方法がありますが、これらの方法は複雑で計算コストが高く、リアルタイムアプリケーションでは実用的ではありません。

最近では、いくつかの手法が動的な視点合成に優れた結果を生み出しており、印象的なレンダリング品質を示しています。ただし、高品質のイメージをレンダリングする際のレイテンシーを改善する必要があるという点では、まだ改善の余地があります。この研究論文では、4K4Dという4Dポイントクラウド表現を紹介し、ハードウェアラスタ化をサポートし、迅速なレンダリングを可能にします。

4K4Dは、4つのフィーチャーのベクトルとして、4Dグリッドベースで3Dシーンを表現します。このような表現では、グリッド内のポイントを規則的にし、最適化しやすくします。モデルはまず、入力ビデオのオブジェクトのジオメトリと形状をスペースカービングアルゴリズムとニューラルネットワークを使用して表現し、ポイントクラウドから3Dシーンを表現する方法を学習します。次に、ポイントクラウド表現をレンダリングするために、差分深度ピーリングアルゴリズムが開発され、レンダリングスピードを向上させるためにハードウェアラスタイザが活用されます。

レンダリングスピードを向上させるために、次の加速技術を適用します:

  • 一部のモデルパラメータは事前に計算され、メモリに格納され、グラフィックスカードがシーンを高速にレンダリングできるようにします。
  • モデルの精度を32ビット浮動小数点から16ビット浮動小数点に減らします。これにより、パフォーマンスの損失を見えることなく、FPSが20増加します。
  • 最後に、差分深度ピーリングアルゴリズムに必要なレンダリングパスの数を減らし、品質には見えない変化があるまま、FPSが20増加します。

研究者は、4K4DのパフォーマンスをDNA-Rendering、ENeRF-Outdoorなどの複数のデータセットで評価しました。研究者の3Dシーンのレンダリング方法は、前者のデータセットでは1080pで400 FPS以上、後者のデータセットでは4Kで80 FPSでレンダリングすることができます。これは、最先端のリアルタイム動的視点合成方法ENeRFよりも30倍以上高速であり、さらに優れたレンダリング品質も提供しています。ENeRF Outdoorデータセットは、複数のアクターを含む比較的困難なものですが、4K4Dは他のモデルと比較しても優れた結果を生み出し、一部のレンダリングで画像の端周りに黒いアーティファクトが発生する他のモデルと比較しても、ぼやけた結果を生み出しました。

まとめると、4K4Dは、4K解像度でのリアルタイム視点合成において、遅いレンダリングスピードの問題に対処する新しいメソッドです。これは、状態-of-the-artのレンダリング品質を実現し、レンダリングスピードを30倍以上向上させるニューラルポイントクラウドベースの表現です。ただし、長時間のビデオに対する高いストレージ要件やフレーム間のポイント対応の確立など、いくつかの制限事項があり、研究者は将来の作業でこれらに対処する予定です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

CMUの研究者がMultiModal Graph Learning(MMGL)を導入「複数の多様な隣接情報から関係構造を持つ情報を抽出するための新たなAIフレームワーク」としています

多モーダルグラフ学習は、機械学習、グラフ理論、およびデータフュージョンの概念を組み合わせた多様なデータソースとその相...

人工知能

「オッペンハイマーからジェネラティブAIへ:今日の企業にとっての貴重な教訓」

先週末、最新の大ヒット作品「オッペンハイマー」を劇場で3時間観ましたストーリー全体と結末はすでに知っていたにも関わらず...

AIニュース

「イーロン・マスクのxAIはTwitterのフィードでトレーニングされました」

テスラやSpaceXなどの企業を展開するビジョナリーであるイーロン・マスクは、人工知能(AI)の領域に再び目を向けています。...

機械学習

スマートインフラストラクチャのリスク評価における人間とAI・MLの協力

「人間の専門知識、AIの洞察、およびMLアルゴリズムをシナジー効果を発揮させることで、より安全で適応性のある都市システム...

AIニュース

「Amazon SageMaker StudioでAmazon SageMaker JumpStartを使用して安定したDiffusion XLを利用する」

「今日、私たちはお知らせすることを喜んでいますStable Diffusion XL 1.0(SDXL 1.0)がAmazon SageMaker JumpStartを通じて...

データサイエンス

「Pythonで簡単に実装するマルチクラスSVM」

この物語では、一般的なソフトマージンとカーネル化された形式でサポートベクターマシンの学習アルゴリズムを実装しますSVMの...