この中国のAI研究は、マルチモーダルな大規模言語モデル(MLLMs)の幻覚を修正するために設計された革新的な人工知能フレームワークである「ウッドペッカー」を紹介します

『ウッドペッカー』:マルチモーダルな大規模言語モデル(MLLMs)の幻覚修正における革新的な人工知能フレームワークをご紹介

中国の研究者たちは、マルチモーダルな大規模言語モデル(MLLM)における幻覚の問題に対処するために、Woodpeckerという新しい補正AIフレームワークを紹介しました。これらのモデルはテキストと画像処理を組み合わせており、しばしば提供された画像の内容を正確に反映していないテキストの説明を生成します。このような不正確さは、存在しないオブジェクトに関わる物体レベルの幻覚と、オブジェクト属性の不正確な説明による属性レベルの幻覚として分類されます。

幻覚を軽減するための現在のアプローチは、通常、特定のデータでMLLMを再トレーニングすることを含みます。これらの命令ベースのメソッドはデータ集約型であり、計算量が多く必要です。これに対し、Woodpeckerはトレーニング不要の代替手法を提供し、異なる段階での解釈力を向上させることができます。

Woodpeckerは、次の5つのキープロセスからなります:

1. キーコンセプトの抽出:この段階では、生成されたテキストで言及されている主要なオブジェクトを特定します。

2. 質問の形成:抽出したオブジェクトに関連する質問を診断するために形成します。

3. ビジュアル知識の検証:これらの質問には、オブジェクトレベルのクエリに対するオブジェクト検出などの専門モデル、および属性レベルの質問に対するビジュアル質問応答(VQA)モデルなどが使用されます。

4. ビジュアルクレームの生成:質問-応答ペアは、オブジェクトレベルと属性レベルの両方のクレームを含む構造化されたビジュアル知識ベースに変換されます。

5. 幻覚の修正:ビジュアル知識ベースを使用して、システムはMLLMにガイドを与え、生成されたテキスト内の幻覚を修正し、明確さと解釈可能性を保証するために境界ボックスを付けます。

このフレームワークは透明性と解釈可能性を重視しており、MLLMにおける幻覚の理解と修正に貴重なツールです。

研究者たちはWoodpeckerをPOPE、MME、およびLLaVA-QA90の3つのベンチマークデータセットで評価しました。POPEベンチマークでは、WoodpeckerはベースラインモデルであるMiniGPT-4とmPLUG-Owlよりも明確性を改善し、それぞれ30.66%と24.33%の精度向上を達成しました。このフレームワークは、ランダム、人気、および敵対的なシナリオを含むさまざまな設定で一貫性を示しました。

MMEベンチマークでは、Woodpeckerは特に件数に関連するクエリにおいて、MiniGPT-4を101.66ポイント上回る驚異的な改善を示しました。属性レベルのクエリでは、Woodpeckerはベースラインモデルの性能を向上させ、属性レベルの幻覚に効果的に対処しました。

LLaVA-QA90データセットでは、Woodpeckerは一貫して精度と詳細性の指標を向上させ、MLLMが生成する応答の幻覚を修正し、説明の内容を豊かにする能力を示しました。

まとめると、Woodpeckerフレームワークは、マルチモーダルな大規模言語モデルにおける幻覚に取り組むための有望な補正手法を提供しています。再トレーニングではなく解釈と修正に焦点を当てることで、MLLMが生成する説明の信頼性と正確性を向上させ、テキストと画像処理を含むさまざまなアプリケーションに潜在的な利益をもたらす貴重なツールです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

このAI研究では、「DreamCraft3D」という、結束力のある高精細な3Dモデルを生成するための階層的な手法を紹介しています

“` 2D生成モデリングの信じられないほどの人気は、ビジュアル素材の制作方法に大きな影響を与えています。3Dファブリッ...

データサイエンス

「マシンの学習を忘れることを学ぶ」

現代のテクノロジーの世界では、機械学習について聞かない人を見つけるのは困難でしょう過去10年間、この研究分野はとてもト...

機械学習

アーサーがベンチを発表:仕事に最適な言語モデルを見つけるためのAIツール

ニューヨーク市の通りでは、AIの新興スタートアップ「Arthur」が機械学習の世界で話題をさらっています。生成型AIに関するブ...

AI研究

『CMUからの新しいAI研究は、適切な言語モデルに対して物議を醸す行動を生成させるための、簡単で効果的な攻撃手法を提案しています』

ChatGPT、Bard AI、およびLlama-2などの大規模言語モデル(LLM)は、望ましくないまたは攻撃的なコンテンツを生成することが...

AI研究

スタンフォード大学研究者が提案するMAPTree:強化された堅牢性とパフォーマンスを備えたベイジアンアプローチに基づく決定木生成

決定木は、分類と回帰の両方のタスクに使用できる人気のある機械学習アルゴリズムです。それらはデータセットを最も重要な特...

AIニュース

「AI企業は、彼らが引き起こす損害について責任を負わなければならない」と『ゴッドファーザー』が言う

一群の専門家は、人工知能企業は彼らの製品が引き起こす損害に対して責任を負う必要があると述べました