CatBoost回帰:分かりやすく解説してください

CatBoost回帰の解説を分かりやすくしてください

CatBoostの内部動作の包括的な(かつ図解された)解説

CatBoost(カテゴリカルブースティング)は、カテゴリカルな特徴量の扱いに優れ、正確な予測を行う強力な機械学習アルゴリズムです。伝統的に、カテゴリカルデータの扱いはかなり難しいものであり、ワンホットエンコーディング、ラベルエンコーディング、または他の前処理技術が必要であり、これらはデータの固有な構造を歪める可能性があります。この問題に対処するために、CatBoostは独自の組み込みエンコーディングシステムである「Ordered Target Encoding」を使用します。

実際にCatBoostがどのように機能するかを見てみましょう。Goodreadsでの平均書籍評価とお気に入りのジャンルに基づいて、誰かが本「Murder, She Texted」をどのように評価するかを予測するモデルを構築します。

6人に「Murder, She Texted」を評価してもらい、それらに関連する他の情報を収集しました。

これが現在のトレーニングデータセットであり、データをトレーニングするために使用します。

ステップ1:データセットをシャッフルし、「Ordered Target Encoding」を使用してカテゴリカルデータをエンコードする

カテゴリカルデータを前処理する方法はCatBoostアルゴリズムの中心的な要素です。この場合、カテゴリカルな列は1つだけであり、「お気に入りのジャンル」です。この列はエンコードされ(離散的な整数に変換され)、エンコード方法は回帰問題か分類問題かによって異なります。この場合、予測したい変数「Murder, She Texted Rating」が連続値であるため、回帰問題として扱います。以下の手順に従います。

1 — データセットをシャッフルします:

2 — 連続的な目標変数を離散的な「バケット」に入れます:ここではデータが非常に少ないため、同じサイズの2つのバケットを作成して目標変数を分類します(バケットの作成方法の詳細はこちらをご覧ください)。

「Murder, She Texted Rating」の最小値3つをバケット0に入れ、残りをバケット1に入れます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「マーク・A・レムリー教授による生成AIと法律について」

データサイエンス内で新しい分野が現れ、研究内容が理解しにくい場合は、専門家やパイオニアと話すことが最善です最近、私た...

機械学習

もし芸術が私たちの人間性を表現する方法であるなら、人工知能はどこに適合するのでしょうか?

MITのポストドクターであるジヴ・エプスタイン氏(SM '19、PhD '23)は、芸術やその他のメディアを作成するために生成的AIを...

人工知能

「コマンドバーの創設者兼CEO、ジェームズ・エバンスによるインタビューシリーズ」

ジェームズ・エバンズは、CommandBarの創設者兼CEOであり、製品、マーケティング、顧客チームを支援するために設計されたAIパ...

人工知能

「トリントの創設者兼CEO、ジェフ・コフマンへのインタビューシリーズ」

ジェフ・コーフマンは、ABC、CBS、CBCニュースで30年のキャリアを持った後、Trintの創設者兼CEOとなりましたジェフは手作業の...

人工知能

「クリス・サレンス氏、CentralReachのCEO - インタビューシリーズ」

クリス・サレンズはCentralReachの最高経営責任者であり、同社を率いて、自閉症や関連する障害を持つ人々のために優れたクラ...

AIテクノロジー

アンソニー・グーネティレケ氏は、Amdocsのグループ社長であり、テクノロジー部門および戦略部門の責任者です- インタビューシリーズ

アンソニー・グーネティレーケは、Amdocsでグループ社長、テクノロジーと戦略担当です彼と企業戦略チームは、会社の戦略を策...