CatBoost回帰:分かりやすく解説してください

CatBoost回帰の解説を分かりやすくしてください

CatBoostの内部動作の包括的な(かつ図解された)解説

CatBoost(カテゴリカルブースティング)は、カテゴリカルな特徴量の扱いに優れ、正確な予測を行う強力な機械学習アルゴリズムです。伝統的に、カテゴリカルデータの扱いはかなり難しいものであり、ワンホットエンコーディング、ラベルエンコーディング、または他の前処理技術が必要であり、これらはデータの固有な構造を歪める可能性があります。この問題に対処するために、CatBoostは独自の組み込みエンコーディングシステムである「Ordered Target Encoding」を使用します。

実際にCatBoostがどのように機能するかを見てみましょう。Goodreadsでの平均書籍評価とお気に入りのジャンルに基づいて、誰かが本「Murder, She Texted」をどのように評価するかを予測するモデルを構築します。

6人に「Murder, She Texted」を評価してもらい、それらに関連する他の情報を収集しました。

これが現在のトレーニングデータセットであり、データをトレーニングするために使用します。

ステップ1:データセットをシャッフルし、「Ordered Target Encoding」を使用してカテゴリカルデータをエンコードする

カテゴリカルデータを前処理する方法はCatBoostアルゴリズムの中心的な要素です。この場合、カテゴリカルな列は1つだけであり、「お気に入りのジャンル」です。この列はエンコードされ(離散的な整数に変換され)、エンコード方法は回帰問題か分類問題かによって異なります。この場合、予測したい変数「Murder, She Texted Rating」が連続値であるため、回帰問題として扱います。以下の手順に従います。

1 — データセットをシャッフルします:

2 — 連続的な目標変数を離散的な「バケット」に入れます:ここではデータが非常に少ないため、同じサイズの2つのバケットを作成して目標変数を分類します(バケットの作成方法の詳細はこちらをご覧ください)。

「Murder, She Texted Rating」の最小値3つをバケット0に入れ、残りをバケット1に入れます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

ディープAIの共同創業者兼CEO、ケビン・バラゴナ氏- インタビューシリーズ

ディープAIの創設者であるケビン・バラゴナは、10年以上の経験を持つプロのソフトウェアエンジニア兼製品開発者です彼の目標...

データサイエンス

「Adam Ross Nelsonによる自信のあるデータサイエンスについて」

データサイエンスの中で新たな分野が現れ、研究内容が理解しにくい場合は、専門家や先駆者と話すのが最善です最近、私たちは...

データサイエンス

2023年にAmazonのデータサイエンティストになる方法は?

ほとんどのビジネスは現在、膨大な量のデータを生成し、編集し、管理しています。しかし、ほとんどのビジネスは、収集したデ...

AIニュース

Q&A:ブラジルの政治、アマゾンの人権、AIについてのGabriela Sá Pessoaの見解

ブラジルの社会正義のジャーナリストは、MIT国際研究センターのフェローです

AIテクノロジー

アンソニー・グーネティレケ氏は、Amdocsのグループ社長であり、テクノロジー部門および戦略部門の責任者です- インタビューシリーズ

アンソニー・グーネティレーケは、Amdocsでグループ社長、テクノロジーと戦略担当です彼と企業戦略チームは、会社の戦略を策...

人工知能

Aaron Lee、Smith.aiの共同設立者兼CEO - インタビューシリーズ

アーロン・リーさんは、Smith.aiの共同創業者兼CEOであり、AIと人間の知性を組み合わせて、24時間365日の顧客エンゲージメン...