「教師なし学習を用いた秋の検出モデルの作成」

「秋のトレンドを把握するための教師なし学習モデルの構築」

Source: Image by Harlie Raethel on Unsplash

イントロダクション

急速に高齢化する現代社会では、転倒のリスクが増えています。高齢者にとって、転倒は痛みを伴う骨折から入院、そして悲劇的な場合には死に至る重大な結果をもたらすことがあります。さらに、一人暮らしの場合、転倒時に助けを呼ぶ人が周りにいないことがよくあります。このような困難な状況では、身に着けることができる転倒検知器は実用的で、命を救う可能性がある解決策となります。

驚くべきことに、多くのスマートフォンは既に動きを計測するセンサーを備えています。これらのセンサーには加速度計、ジャイロスコープ、重力センサーが含まれています。ポケットに入れたり、首にコードを巻いたりするなど、身に着けると、スマートフォンは日常活動に関連する動きを効果的に検知することができます。アプリの利用により、これらのスマートフォンで収集された生のセンサーデータにアクセスし、分析することが可能です。

転倒検知における動きセンサー入力から転倒を検知するための特に有望な手法の一つは、クラスタリングアルゴリズムの使用です。これらの強力なツールは、特徴の異なる信号を識別することを可能にします。たとえば、転倒行動は、歩行や静止するときと比べて、加速度と姿勢の特徴的なパターンを示します。クラスタリングアルゴリズムを適用することで、日常の動きのノイズから転倒の動きを効果的に分離し、潜在的な転倒を素早く検出し対応する能力を高めることができます。

データ

プロジェクトのデータを収集するために、私はスマートフォンにセンサーロガーアプリをインストールしました(iOSではApp Store、AndroidではPlay Storeで利用可能)。そして、歩いている間に加速度計、重力、ジャイロスコープのセンサーからの値を記録し始めました。そして、しばらく歩いた後、急に歩きながら素早くひざまずいて転ぶ動作をシミュレートしました。このパターンを5回繰り返し、その後、センサーロガーアプリの関連機能を使用して、記録された信号を.csvファイルにエクスポートしました。

センサーロガーアプリの関連機能を使用して、加速度計の3軸からの生の信号をグラフで示します。横軸は記録の開始からの経過秒数を表し、…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

「サリー大学の研究者が開発した新しいソフトウェアは、AIが実際にどれだけの情報を知っているかを検証することができます」

ここ数年、人工知能(AI)のドメインでいくつかの技術的なブレークスルーがあり、いくつかの産業やセクターに深い影響を与え...

機械学習

「自己改善のための生成AIと強化学習の統合」

イントロダクション 人工知能の進化する領域において、二つの主要な要素が刷新を果たしました:生成型AIと強化学習。これらの...

AI研究

「AIと脳インプラントにより、麻痺した男性の運動と感覚が回復する」

アメリカの医師たちは、画期的な医療技術を用いて、四肢麻痺の男性に希望をもたらすため、人工知能(AI)と脳インプラントの...

データサイエンス

テキストデータのチャンキング方法-比較分析

自然言語処理(NLP)における「テキストチャンキング」プロセスは、非構造化テキストデータを意味のある単位に変換することを...

人工知能

3つの新しい方法、生成AIがあなたの検索に役立つ方法

今日から、私たちはSearch Labsで最初の実験の1つであるSGE(Search Generative Experience)へのアクセスを開始し始めます

機械学習

大規模言語モデルの探索 -Part 1

この記事は主に自己学習のために書かれていますそのため、広範囲かつ深い内容です興味のあるセクションをスキップしたり、自...