「LangChainとGPT-3を使用して、ドキュメント用の透明な質問応答ボットを構築しましょう」

Build a transparent question-answering bot for documents using LangChain and GPT-3.

情報提供型QAボットの開発ガイド:使用されたソースを表示する

Justin Ha氏による写真、Unsplashから。

Question Answeringシステムは、大量のデータやドキュメントを分析する際に非常に役に立ちます。しかし、モデルが回答を生成するために使用したソース(つまり、ドキュメントの一部)は通常、最終的な回答に表示されません

回答の文脈と起源を理解することは、正確な情報を求めるユーザーだけでなく、QAボットを継続的に改善したい開発者にとっても価値があります。回答にソースが含まれていることで、開発者はモデルの意思決定プロセスに関する貴重な知見を得ることができ、反復的な改善と微調整を容易にします。

この記事では、LangChainとGPT-3(text-davinci-003)を使用して、回答の生成に使用されたソースを表示する透明なQuestion-Answeringボットを作成する方法を2つの例を使用して紹介します。

最初の例では、質問に答えるためにウェブサイトのコンテンツを活用する透明なQAボットの作成方法を学びます。2番目の例では、異なるYouTubeの動画のトランスクリプトを使用し、タイムスタンプのあるものとないものの両方を探求します。

データを処理してベクトルストアを作成する

GPT-3のようなLMMの機能を最大限に活用するためには、ドキュメント(例:ウェブサイトのコンテンツやYouTubeのトランスクリプト)を正しい形式(最初にチャンク、次に埋め込み)で処理し、ベクトルストアに格納する必要があります。以下の図1は、左から右への処理フローを示しています。

図1. データ処理とベクトルストアの作成の処理フロー(著者による画像)

ウェブサイトのコンテンツの例

この例では、特にLinuxに焦点を当てたオープンソース技術に特化したウェブポータルであるIt’s FOSSのコンテンツを処理します。

まず、処理してベクトルストアに格納するすべての記事のリストを取得する必要があります。以下のコードは、すべての記事へのリンクが含まれるsitemap-posts.xmlファイルを読み込みます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「ジンディのCEO兼共同創設者、セリーナ・リー― インタビューシリーズ」

「Celina Leeは、ZindiのCEO兼共同創設者であり、アフリカのデータサイエンティスト向けの最大の専門ネットワークです Celina...

人工知能

「LeanTaaSの創設者兼CEO、モハン・ギリダラダスによるインタビューシリーズ」

モーハン・ギリダラダスは、AIを活用したSaaSベースのキャパシティ管理、スタッフ配置、患者フローのソフトウェアを提供する...

人工知能

「パクストンAIの共同創業者兼CEO、タングイ・シャウ - インタビューシリーズ」

タングイ・ショウは、Paxton AIの共同創設者兼CEOであり、法的研究と起草の負担を軽減するためにGenerative AIを使用するプラ...

人工知能

キャルレールの最高製品責任者、ライアン・ジョンソンへのインタビューシリーズ

ライアンは、初期のスタートアップからフォーチュン100の組織まで、多様なテクノロジーと製品開発のリーダーシップ経験を15年...

人工知能

「コーネリスネットワークスのソフトウェアエンジニアリング担当副社長、ダグ・フラーラー氏 - インタビューシリーズ」

ソフトウェアエンジニアリングの副社長として、DougはCornelis Networksのソフトウェアスタック全体、Omni-Path Architecture...

人工知能

「Zenの共同創設者兼CTO、イオン・アレクサンドル・セカラ氏によるインタビューシリーズ」

創業者兼CTOであるIon-Alexandru Secaraは、Zen(PostureHealth Inc.)の開発を牽引しており、画期的な姿勢矯正ソフトウェア...