ChatGPTのバイアスを解消するバックパック:バックパック言語モデルはトランスフォーマーの代替AI手法です

Backpack language model is an alternative AI method to Transformer to eliminate bias in ChatGPT.

AI言語モデルは私たちの生活の中で不可欠なものになっています。情報にアクセスするために数十年間Googleを使用してきましたが、今では徐々にChatGPTに切り替えています。ChatGPTは簡潔な回答と明確な説明を提供し、必要な情報を見つけるのが通常よりも速くなります。

これらのモデルは、私たちが長年にわたって生み出したデータから学習します。その結果、私たちはAIモデルにバイアスを転送し、これは議論の対象となっています。注目されている特定のバイアスの1つは、代名詞の分布におけるジェンダーバイアスであり、モデルが文脈に基づいて「彼」「彼女」といったジェンダーに関連する代名詞を好む傾向があるというものです。

このジェンダーバイアスに対処することは、公正で包括的な言語生成を確保するために重要です。たとえば、「CEOは信じている…」という文章を始めると、モデルはと続け、CEO看護師に置き換えると、次のトークンは彼女になります。この例は、バイアスを調べ、それらを緩和する方法を探るための興味深い事例研究として役立ちます。

実際には、文脈はこれらのバイアスを形成する上で重要な役割を果たします。CEOを、異なるジェンダーに一般的に関連付けられている職業に置き換えることで、観察されたバイアスを反転することができます。しかし、ここでの課題は、CEOが現れるすべての異なる文脈で一貫してデバイアスを実現することです。特定の状況に関係なく、信頼性が高く、予測可能な介入を望んでいます。言語モデルを理解し、改善するためには解釈性と制御が重要です。残念ながら、現在のTransformerモデルは、その性能に驚くべきものがあるにもかかわらず、これらの基準を完全に満たしていません。彼らの文脈表現は、手元の文脈に依存する複雑で非線形な効果を導入します。

では、これらの課題をどのように克服できますか?大規模言語モデルに導入したバイアスにどう対処すればよいのでしょうか?Transformerを改善するべきなのでしょうか、それとも新しい構造を考えるべきなのでしょうか?答えはBackpack Language Modelsです。

Backpack LMは、センスベクトルとして知られる文脈非依存の表現を利用して、代名詞分布のデバイアス化の課題に取り組みます。これらのベクトルは、単語の意味と異なる文脈での役割を捉え、単語に複数のパーソナリティを与えます。

Backpack LMの概要。 出典:https://arxiv.org/pdf/2305.16765.pdf

Backpack LMsでは、予測はセンスベクトルとして知られる文脈非依存の表現の対数線形の組み合わせになります。語彙中の各単語は、異なる文脈での単語の潜在的な役割を表す複数のセンスベクトルで表されます。

これらのセンスベクトルは、特定の文脈で予測的に有用になるように専門化されます。シーケンス内の単語のセンスベクトルの加重和は、コンテキスト関数によって決定されるシーケンス全体に作用する文脈関数によって決定されるBackpack 表現を形成し、重みが決定されます。これらのセンスベクトルを活用することで、Backpack モデルは、すべての文脈で予測可能な介入を実現します。

つまり、モデルに対して文脈非依存の変更を行っても、一貫してその振る舞いに影響を与えることができます。Transformerモデルに比べ、Backpack モデルはより透明性が高く、管理しやすいインターフェースを提供します。理解しやすく制御しやすい正確な介入を提供します。さらに、Backpack モデルは性能を犠牲にすることなく、Transformerモデルと同等の結果を実現します。

センスベクトルの例。 出典:https://backpackmodels.science/

Backpackモデルの意味ベクトルは、最新のトランスフォーマーモデルの単語埋め込みよりも豊富な単語の意味をエンコードしており、語彙の類似性タスクで優れた性能を発揮しています。さらに、職業に関する単語のジェンダーバイアスを減らすなど、意味ベクトルに介入することで、Backpackモデルが提供する制御機構が示されています。ジェンダーバイアスに関連する意味ベクトルを縮小することにより、限られた環境で文脈予測の不均衡を大幅に削減することができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「機械学習と人工知能を利用した在庫管理の改善」

「人工知能(AI)は在庫管理システムの効果を大幅に向上させることができます需要予測をサポートし、在庫レベルを最適化し、...

機械学習

ショッピファイの製品推奨アプリに生成AIを導入する

ショッピファイの製品推薦アプリケーションであるSearch and DiscoveryにジェネレーティブAIがどのように実装されたかについ...

AI研究

黄さんの法則に留意する:エンジニアたちがどのように速度向上を進めているかを示すビデオ

話の中で、NVIDIAのチーフサイエンティストであるビル・ダリー氏が、モーアの法則時代後のコンピュータパフォーマンスの提供...

AIニュース

マイクロソフトがアメリカの労働組合と手を結び、AI労働力に関する議論に参加します

Microsoftは最近、労働組合アメリカ連邦労働総評議会(AFL-CIO)と包括的な対話を開始するために、人工知能(AI)が労働力に...

人工知能

デヴオプスにおけるジェネレーティブAI:ピークなデヴオプスパフォーマンスを実現するスマートな(そして効果的な)方法

ジェネレーティブAIがDevOpsでチームワークを改善し、手続きを迅速化し、よりアジャイルかつ効率的な職場を作り出す方法を調...

データサイエンス

「創発的AIの倫理的なフロンティア:導入と重要性」

イントロダクション 生成AIは、コンテンツの創造、模倣、強化という顕著な能力を持つことから、無類の可能性と複雑な倫理的ジ...