UCLとGoogleの研究者が提案する「AudioSlots:オーディオドメインの盲目的なソース分離のためのスロット中心の生成モデル」

AudioSlots Slot-centered generative model for blind source separation in the audio domain proposed by researchers from UCL and Google.

最近、集合構造化データ上で動作するアーキテクチャにおけるニューラルネットワークの使用と、非構造化入力から集合構造化出力空間へのマッピングを学習することが注目されています。特に、ビジョン領域でのオブジェクトの識別と非教示的なオブジェクトの発見において、スロット中心型またはオブジェクト中心型のシステムがサポートされています。これらのオブジェクト中心型のアーキテクチャは、順列同変性の内在的な帰納バイアスを持つため、音声の分離に適しています。本論文では、これらのアーキテクチャからのキーコンセプトの応用を通じて、音声ソースを内部情報や混合プロセスに関する情報を持たずに混合音声信号から区別することを目的としています。

図1:アーキテクチャの概要:入力波形を切り取った後、スペクトログラムが作成されます。その後、ニューラルネットワークはスペクトログラムを順列不変なソース埋め込み(s1…n)のセットにエンコードし、それらをデコードして異なるソーススペクトログラムのコレクションを生成します。マッチングベースの順列不変損失関数は、グラウンドトゥルースのソーススペクトログラムを使用してパイプライン全体を監視します。

音の分離は、ソースの順序がランダムであるため、集合ベースの問題です。混合音声スペクトログラムから順序のない一連の別々のソーススペクトログラムへのマッピングが学習され、音の分離の課題は順列不変条件付き生成モデリング問題としてフレーム化されます。彼らの技術であるAudioSlotsを使用することで、音声は各ソースごとに異なる潜在変数に分割され、それらはソース固有のスペクトログラムを提供するためにデコードされます。これはTransformerアーキテクチャに基づくエンコーダーとデコーダー関数を使用して作成されます。これは順列同変性を持ち、ソースの潜在変数の順序に依存しない(「スロット」とも呼ばれる)ため、その独立性を保ちます。彼らは、このようなアーキテクチャの可能性を評価するために、マッチングベースの損失を使用してAudioSlotsをトレーニングし、混合音声入力から独立したソースを生成します。

ロンドン大学とGoogle Researchの研究者は、AudioSlotsというスロット中心の音声スペクトログラムの生成アーキテクチャを提案しています。彼らは、AudioSlotsが音声ソースの分離の問題に構造化生成モデルを利用する可能性を示しています。ただし、高周波特徴の再構築品質が低いなど、AudioSlotsの現在の実装にはいくつかの欠点があります。また、独立した音声ソースを監視する必要があります。これらの問題は解決できる可能性があると自信を持っており、さまざまな研究の可能性のいくつかを示唆しています。

彼らは、Libri2Mixからの簡単な2つのスピーカーボイス分離課題で彼らの手法を実演しています。スロット中心の生成モデルによる音の分離は有望ですが、いくつかの困難も伴います:提示されたモデルのバージョンでは、高周波詳細を生成することが難しく、独立して予測された音声チャンクを縫い合わせるためにヒューリスティックを使用し、トレーニングには依然としてグラウンドトゥルースの参照音声ソースが必要です。彼らの将来の研究では、研究で提供される潜在的なルートについて、これらの困難が克服される可能性があると楽観的です。ただし、彼らの結果は主にこのアイデアの概念実証として役立ちます。

この論文をチェックしてください。最新のAI研究ニュースやクールなAIプロジェクトなどを共有している22k+ ML SubRedditDiscordチャンネルEmailニュースレターに参加するのを忘れないでください。上記の記事に関する質問や見落としがあれば、お気軽に[email protected]までメールでお問い合わせください。

AI Tools Clubの100以上のAIツールをチェックアウト

この記事は、MarkTechPostで最初に表示されました。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Related articles

Discover more

AI研究

Google DeepMindの研究者がSynJaxを紹介:JAX構造化確率分布のためのディープラーニングライブラリ

データは、その構成要素がどのように組み合わさって全体を形成するかを説明するさまざまな領域で構造を持っていると見なすこ...

AIニュース

「医師がAIとの患者ケアで葛藤し、緩い監視を指摘する」

F.D.A.は人工知能を使用する多くの新しいプログラムを承認しましたが、医師たちは、これらのツールが介護を本当に改善するか...

人工知能

新たな研究が、AIの隠れた脆弱性を明らかにする

人工知能(AI)の急速に進化する風景では、変革的な変化の約束は、革新的な自動車が交通を再構築するという前途洋々の可能性...

AI研究

このAI研究により、チップデザインに適した言語モデルの独自な手法が紹介されています

ChipNeMoは、市販のLLMに頼らずに、ドメイン適応技術を用いた産業用チップデザインにおけるLLMの利用を探求しています。これ...

データサイエンス

「AI開発でこれらのミスを com しないでください」

「品質の高いAIデプロイメントを開発するには、準備が全体の90%を占めます以下に、最高のAIモデルを開発するために注意すべ...

機械学習

「Falcon 180Bをご紹介します:1800億のパラメータを持つ、公開されている最大の言語モデル」

強力かつ多目的な言語モデルへの需要は、自然言語処理と人工知能においてますます迫り来るものとなっています。これらのモデ...