「Appleの研究者たちは、暗黙的なフィードバックを持つ協調フィルタリングのための新しいテンソル分解モデルを提案する」
Appleの研究者が新しいテンソル分解モデルを提案する
過去の行動からユーザーの好みを推測する能力は、効果的な個別の提案にとって重要です。多くの製品には星の評価がないため、このタスクは指数関数的に困難になります。過去の行動は一般的にバイナリ形式で解釈され、ユーザーが過去に特定のオブジェクトと対話したかどうかを示します。このバイナリデータに基づいて、そのような秘匿的な入力からユーザーの好みを推測するために、追加の仮定をする必要があります。
視聴者は、関与したコンテンツを楽しんでおり、注意を引かなかったコンテンツは無視しているという仮定は、実際の使用ではめったに正確ではありません。消費者が製品と関わっていないのは、それが存在すら知らないためかもしれません。したがって、ユーザーが単に対話できない要素については無視または関心を持っていないと仮定するのがより妥当です。
研究では、既に馴染みのある製品を未知の製品よりも好む傾向があると仮定しました。この考えは、個別の推奨を行うための技術であるベイジアン個別ランキング(BPR)の基礎となりました。BPRでは、データはユーザーを表す最初の次元を持つ3次元のバイナリテンソルDに変換されます。
- このAI研究は、ポイントクラウドを2D画像、言語、音声、およびビデオと一致させる3Dマルチモダリティモデルである「Point-Bind」を紹介します
- 「MITキャンパスでのAIパイロットプログラムは、エネルギー使用量と排出物を削減することを目指しています」
- 「このAI研究は、深層学習と進化アルゴリズムを用いて、シリコンMach-Zehnderモジュレータの設計を革新します」
新しいAppleの研究では、推移性に依存しない人気のある基本的な製品の評価(BPR)モデルの変種を作成しました。一般化のために、彼らは代替テンソル分解を提案しています。彼らはスライス反対称分解(SAD)という新しい暗黙のフィードバックベースの協調フィルタリングモデルを導入します。ユーザーとアイテムの相互作用の新しい三次元テンソルの視点を使用して、SADは通常の方法とは異なり、各アイテムに1つの潜在ベクトルを追加します(アイテムベクトルとしての潜在表現を推定する従来の方法とは異なります)。相対的な優先順位を評価する際にアイテム間の相互作用を生成するため、この新しいベクトルは通常の内積によって導かれる好みを一般化します。ベクトルが1に収束すると、SADは最新の協調フィルタリングモデル(SOTA)となります。この研究では、その値をデータから決定することを許可しています。新しいアイテムベクトルの値が1を超えることを許可すると、非常に重要な結果が生じます。対比の中にサイクルが存在することは、ユーザーのメンタルモデルが線形ではないことを示す証拠と解釈されます。
チームはSADパラメータ推定のためのクイックなグループ座標降下法を提案しています。シンプルな確率的勾配降下法(SGD)を使用して、正確なパラメータ推定を迅速に行います。シミュレーション研究を使用して、まずSGDの効果とSADの表現力を実証します。そして、利用可能なリソースのトリオを使用して、SADを他の7つの代替の最新の推奨モデルと比較します。この研究では、以前無視されていたデータとエンティティ間の関係を組み込むことで、更新されたモデルがより信頼性の高い正確な結果を提供することも示しています。
この研究では、研究者は協調フィルタリングを暗黙のフィードバックとして参照しています。ただし、SADの応用範囲は前述のデータタイプに限定されません。たとえば、明示的な評価が含まれるデータセットは、現在のモデルの一貫性を事後評価するのではなく、モデルの適合中に直ちに使用できる部分順序を含んでいます。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 「UCLAの研究者たちは、広帯域の回折光学ニューラルネットワークに基づいて設計されたマルチスペクトルQPIシステムを紹介する」
- 『キャタリスト研究の変革:テキスト入力を使用したエネルギー予測のために設計された Transformer ベースの AI モデル、CatBERTaに出会ってください』
- 「産業界が音声AIを活用して消費者の期待に応えている方法」
- 「Google Researchが探求:AIのフィードバックは、大規模な言語モデルの効果的な強化学習において人間の入力を置き換えることができるのか?」
- UCLAとGoogleの研究者が、AVISという画像質問応答の自律情報検索のための画期的なAIフレームワークを提案しています
- 「強力な遺産:研究者の母が核融合への情熱をかきたてる」
- 「マイクロソフトリサーチがAIコンパイラを1つではなく、2つでもなく、4つも新たに紹介」