小さな言語モデル(SLM)とその応用について知るべきすべてのこと

「小さな言語モデル(SLM)とその応用に関する全ての知識を網羅する」

大型言語モデル(LLM)は、GPT、PaLM、LLaMAなど、その驚異的な能力により、多くの関心を集めています。自然言語処理、生成、理解の力を活用してコンテンツの生成、質問への回答、テキストの要約などを行うことができるため、LLMは最近の話題となっています。

ただし、大モデルのトレーニングとメンテナンスの高い費用、特定の目的にカスタマイズする難しさは、彼らにとって課題となっています。OpenAIのChatGPTやGoogle Bardなどのモデルは、トレーニングデータの大量、莫大な記憶容量、複雑なディープラーニングフレームワーク、膨大な電力など、膨大なリソースを必要とします。

小型言語モデルとは何ですか?

その代替として、小型言語モデル(SLM)が登場し、より強力かつ柔軟になってきました。小型言語モデルは、小型のニューラルネットワークサイズ、パラメータ数、トレーニングデータのボリュームを特徴としています。LLMよりもメモリと処理能力が少なくて済むため、オンプレミスおよびオンデバイスの展開に最適です。

SLMは、リソース制約がある状況で有用なオプションです。その『小さい』という用語は、モデルの効率性とアーキテクチャの両方に言及しています。軽量設計のおかげで、SLMはパフォーマンスとリソース使用量をバランスさせることで、さまざまなアプリケーションに柔軟な解決策を提供します。

小型言語モデルの重要性

  1. 効率的:トレーニングおよび展開の観点から見ると、SLMはLLMよりも効率的です。コンピューティングコストを削減したい企業は、よりパワフルな機器で作業することができ、トレーニングに必要なデータも少なくて済むため、多額の費用が節約できます。
  1. 透明性:洗練されたLLMと比較して、小型言語モデルは通常よりも透明で説明可能な動作を示します。透明性により、モデルの意思決定プロセスを理解し、監査することが容易になり、セキュリティ上の欠陥を見つけて修正することが容易になります。
  1. 正確性:小型言語モデルは、その小さなスケールのため、事実に基づいた正確な情報を提供し、偏見を表示しにくくなっています。特定のデータセットに対してターゲットトレーニングを行うことにより、異なる企業の基準に合致する正確な結果を一貫して生成することができます。
  1. セキュリティ:セキュリティに関しては、小型言語モデルはより大型のモデルよりも優れた機能を持っています。SLMは、コードベースが小さく、パラメータ数が少ないため、悪意のある行為者に対する攻撃面の可能性が低くなります。トレーニングデータへの制御は、関連するデータセットを選択し、悪意のあるデータや偏ったデータに関連するリスクを減らすことで、セキュリティをさらに強化するのに役立ちます。

小型言語モデルの例

  1. DistilBERTは、効率を損なうことなくパフォーマンスを保持するBERTのより速く、コンパクトなバージョンで、NLPを変革しています。
  1. MicrosoftのOrca 2は、合成データを使用してMetaのLlama 2を洗練させ、特にゼロショットの推論タスクにおいて競争力のあるパフォーマンスレベルを達成しています。
  1. Microsoft Phi 2は、適応性と効率を重視したトランスフォーマーベースの小型言語モデルであり、論理的推論、常識、数学的推論、言語理解などの能力を示します。
  1. GoogleのBERTモデルの改良版(BERT Mini、Small、VoAGI、Tinyなど)は、さまざまなリソース制約に対応するために設計されています。これらのバージョンは、Mini(4.4万パラメータ)からVoAGI(4100万パラメータ)まで、さまざまなアプリケーションに柔軟性を提供します。

小型言語モデルの実践的な応用

  1. 顧客サービスの自動化:SLMは、俊敏性と効率性の向上のため、顧客サービスの自動化に最適です。マイクロモデルは、ルーチンの問題や顧客の問い合わせを効率的に処理することができ、人間のエージェントがより個別化された対応に集中できるようにします。
  1. 製品開発のサポート:エッジモデルは、アイデアの生成、機能のテスト、および顧客の需要予測に役立ち、製品開発に不可欠です。
  1. メールの自動化: SLMは、メールのやりとりを迅速化するために、メールの作成、自動応答、改善の提案を行います。迅速かつ効率的なメールのやりとりを保証することで、個人や企業の生産性を向上させます。
  1. 営業とマーケティングの最適化: 製品の提案やカスタマイズされたメールキャンペーンなど、パーソナライズされたマーケティング資料は、小規模な言語モデルが最も適しています。これにより、企業はマーケティングと営業の成果を最大化し、より正確かつ効果的なメッセージを送信することができます。

まとめ

まとめると、Small Language Models(SLM)は人工知能のコミュニティで非常に便利なツールとなっています。ビジネス環境での柔軟性、効率性、カスタマイズ性、改善されたセキュリティ機能は、将来のAIアプリケーションの方向性に影響を与えるため、SLMを強力な立場に置いています。

参考文献

記事「Small Language Models(SLM)とその応用について知っておくべきことすべて」はMarkTechPostで最初に掲載されました。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「さまざまな深層学習を用いた天気予測モデルに関する研究」

気象予測の世界的な影響を考慮して、様々な研究コミュニティの研究者の関心を引いてきました。最近のディープラーニング技術...

データサイエンス

ドメイン適応:事前に学習済みのNLPモデルの微調整

ドメイン適応のために事前学習済みNLPモデルの微調整方法を学びましょう特定の文脈でのパフォーマンスと精度を向上させますス...

データサイエンス

「データサイエンス、機械学習、コンピュータビジョンプロジェクトを強化する 効果的なプロジェクト管理のための必須ツール」

「機械学習またはデータサイエンスのプロジェクトは非常に大規模であり、多くの種類のファイルや多様なアーキテクチャを含ん...

機械学習

マルチモーダル言語モデル:人工知能(AI)の未来

大規模言語モデル(LLM)は、テキストの分析や生成などのタスクをこなすことができるコンピュータモデルです。これらは膨大な...

データサイエンス

オープンソースのベクトルデータベースChromaDBを使用して、セマンティック検索アプリケーションを構築する

はじめに AIアプリケーションとユースケースの台頭に伴い、AIアプリケーションを容易にし、AI開発者が実世界のアプリケーショ...

データサイエンス

マシンラーニングにおける線形回帰の幾何学的解釈と古典統計学との比較

上記の画像は、最小二乗法(OLS)または線形回帰(古典統計学では同義的に使用される言葉)の幾何学的解釈を示しています見て...