アリババの研究者らがQwen-Audioシリーズを発表 ユニバーサルな音声理解能力を備えた大規模な音声言語モデルのセット

「アリババの研究者がQwen-Audioシリーズを発表!ユニバーサルな音声理解能力を備えた大規模な音声言語モデルのセット」

アリババグループの研究チームは、さまざまなタスクに対する事前学習済みオーディオモデルの限定的な課題に対処するQwen-Audioを紹介しました。階層型のタグベースのマルチタスクフレームワークは、共同トレーニングからの干渉問題を避けるために設計されています。Qwen-Audioは、タスク固有の調整なしでベンチマークのタスク全体で素晴らしいパフォーマンスを発揮します。Qwen-Audio-Chatは、Qwen-Audioをベースに作成され、マルチターンの対話とさまざまなオーディオ中心シナリオをサポートし、その普遍的なオーディオ理解能力を示しています。

Qwen-Audioは、従来のオーディオ言語モデルの制限を乗り越え、さまざまなオーディオタイプとタスクに対応します。以前の音声に関する作品とは異なり、Qwen-Audioは人間の話し声、自然音、音楽、歌を組み入れることで、異なる粒度のデータセットでの共同トレーニングを可能にします。このモデルは、タスク固有の変更なしで音声認識タスクなどで優れた成績を収めます。Qwen-Audio-Chatは、これらの機能を拡張し、人間の意図との整合性を図り、オーディオとテキストの入力からのマルチリンガルなマルチターンの対話をサポートし、堅牢かつ包括的なオーディオ理解を示します。

LLM(Language Language Models)は一般的な人工知能に優れていますが、オーディオの理解力に欠けます。Qwen-Audioは、30のタスクとさまざまなオーディオタイプをカバーするように事前学習のスケーリングを行い、干渉を軽減するマルチタスクフレームワークを利用します。Qwen-Audioは、タスク固有の調整なしでベンチマーク全体で印象的なパフォーマンスを発揮します。Qwen-Audio-Chatは、マルチターンの対話とさまざまなオーディオ中心のシナリオをサポートし、LLMの包括的なオーディオインタラクション能力を示しています。

Qwen-AudioとQwen-Audio-Chatは、普遍的なオーディオ理解と柔軟なヒューマンインタラクションのためのモデルです。Qwen-Audioは、オーディオエンコーダを最適化するマルチタスクの事前学習アプローチを採用し、同時に言語モデルの重みを固定します。一方、Qwen-Audio-Chatは、音声エンコーダの重みを固定しながら、言語モデルを最適化する教師ありの微調整を使用します。トレーニングプロセスには、マルチタスクの事前学習と教師付きの微調整が含まれます。Qwen-Audio-Chatは、多言語、マルチターンの対話をオーディオとテキストの入力からサポートする多目的なヒューマンインタラクションを実現し、その適応性と包括的なオーディオ理解を示しています。

Qwen-Audioは、ベンチマークのさまざまなタスクで驚異的なパフォーマンスを発揮し、タスク固有の調整なしでは先行研究を大幅に上回ります。AAC、SWRT ASC、SER、AQA、VSC、およびMNAのようなジョブでは、ベースラインを大幅に上回る結果を一貫して出します。このモデルは、CochlScene、ClothoAQA、VocalSoundで最新の成果を達成し、堅牢なオーディオ理解能力を示しています。さまざまな分析におけるQwen-Audioの優れたパフォーマンスは、チャレンジングなオーディオタスクの最新の成果を達成する能力と有能性を強調しています。

Qwen-Audioシリーズは、さまざまなオーディオタイプとタスクにわたる普遍的な理解を備えた大規模なオーディオ言語モデルを紹介します。これらのモデルは、マルチタスクトレーニングフレームワークを通じて開発され、異なるデータセットのさまざまなテキストラベルからの干渉を乗り越え、知識の共有を促進します。タスク固有の調整なしでベンチマーク全体で印象的なパフォーマンスを実現するQwen-Audioは、先行研究を上回ります。Qwen-Audio-Chatは、これらの機能を拡張し、マルチターンの対話を可能にし、さまざまなオーディオシナリオをサポートし、人間の意図との堅牢な整合性を示し、多言語の相互作用を促進します。

Qwen-Audioの将来の探索には、さまざまなオーディオタイプ、言語、および特定のタスクの能力を拡大することが含まれます。マルチタスクフレームワークの改良や、共同トレーニングにおける干渉問題に対処するための代替の知識共有アプローチの検討が可能です。タスク固有の微調整の調査はパフォーマンスを向上させることができます。新しいベンチマーク、データセット、およびユーザーフィードバックに基づいた継続的な更新は、普遍的なオーディオ理解を向上させることを目指しています。Qwen-Audio-Chatは、人間の意図との整合性を高め、多言語の相互作用をサポートし、動的なマルチターンの対話を可能にするために改良されます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「Langchainとは何ですか?そして、大規模言語モデルとは何ですか?」

この包括的な記事では、LangChainとLarge Language Modelsの両方を探求します両方を理解するために、簡単なチュートリアルを...

人工知能

「思考の連鎖を自動化する:AIが自身に推論を促す方法」

Auto-CoTのプロンプト手法は、多様性に基づくサンプリングとゼロショット生成を使用して、LLMsが複雑な推論を促すために自ら...

機械学習

「機械学習 vs AI vs ディープラーニング vs ニューラルネットワーク:違いは何ですか?」

テクノロジーの急速な進化は、ビジネスが効率化のために洗練されたアルゴリズムにますます頼ることで、私たちの日常生活を形...

AI研究

中国からの新しいAI研究、「Meta-Transformer マルチモーダル学習のための統一されたAIフレームワーク」を提案する

人間の脳は、視覚、聴覚、触覚の信号など、さまざまな感覚入力からの情報を同時に処理する神経ネットワーク理論の典型とされ...

機械学習

「シャッターストックがNVIDIAピカソとともに生成AIを3Dシーンの背景に導入」

こんな感じです:Shutterstockの最新のツールを使って、クリエイターはジェネレーティブAIの助けを借りて、迅速にカスタマイ...

機械学習

PaLM-Eをご紹介します:新たな5620億パラメータの具現化された多モーダル言語モデルで、ロボットの操作計画やビジュアルQAなどのタスクを実行します

大容量の言語モデル(LLM)は、会話、ステップバイステップの推論、数学の問題解決、コードの作成など、さまざまな分野で強力...