「合成イメージングがAIトレーニングの効率性を新たな基準に設定」

「合成イメージングがAIトレーニングの効率性を革新」

研究者たちは、大規模な設定で実施された実験において、合成画像のみで訓練されたモデルが、実際の画像で訓練されたモデルよりも優れていることを初めて示しました。 ¶ クレジット:Alex Shipps / MIT CSAIL、Midjourney AIイメージジェネレータ経由

マサチューセッツ工科大学(MIT)の研究者チームが示したところによれば、合成画像を用いて機械学習モデルを訓練することは、実際の画像を使用する従来の訓練方法よりも優れていることがわかりました。

この戦略は、「マルチポジティブ輪郭学習」として知られており、Stable Diffusionのようなテキストから画像への変換モデルを使用して、StableRepを用いて合成画像を生成します。

StableRepでは、生成モデル内の「ガイダンススケール」を調整し、合成画像の多様性と忠実度のバランスを取ることができます。

研究者たちはまた、言語の監督を追加したStableRep+を作成しました。彼らはStableRep+を2,000万枚の合成画像で訓練し、5000万枚の実際の画像で訓練されたCLIPモデルよりも効率的であることを確認しました。ただし、研究者たちは、テキストプロンプトの選択が完全にバイアスフリーではないことを認識しています。

MITのリージエ・ファンは、「最新のテキストから画像への変換モデルを使用することで、単一のテキスト入力から多様なビジュアルを得るために、過去に類を見ないほどの制御が可能になりました。これは、実世界の画像収集を超える効率性と多様性を持っています」と述べています。MITニュースからの引用 記事全文を見る

概要の著作権 © 2023 SmithBucklin、ワシントンD.C.、アメリカ

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

GPTと人間の心理学

GPTと人間の心理学との類推を行うことで、私たちは生成型AIの出力を促進する方法を理解することができます

機械学習

「PyTorchモデルのパフォーマンス分析と最適化—パート6」

「これは、PyTorch ProfilerとTensorBoardを使用してPyTorchモデルを分析および最適化するトピックに関するシリーズ投稿の第6...

人工知能

「ボイスディープフェイクがあなたの銀行残高を脅かしています」

「人工知能のツールは、詐欺師が人々を騙してお金を送らせるための強力な武器となっています」

機械学習

AWS ジェネラティブ AI イノベーションセンターのアンソロポジック・クロード向けのカスタムモデルプログラムをご紹介します

2023年6月のローンチ以来、AWSジェネレーティブAIイノベーションセンターのストラテジスト、データサイエンティスト、機械学...

機械学習

「RoboPianistに会いましょう:シミュレートされたロボットハンドを使用したピアノマスタリーにおける高次元制御のための新しいベンチマークスイート」

制御および強化学習の領域における計測プロセスは非常に困難です。特に、高次元制御に焦点を当てた頑健なベンチマークが不足...

機械学習

このAIニュースレターは、あなたが必要とするすべてです#62

今週は、METAのコーディングモデルの開発とOpenAIの新しいファインチューニング機能の進展を見てきましたMetaは、Code LLaMA...