「合成イメージングがAIトレーニングの効率性を新たな基準に設定」

「合成イメージングがAIトレーニングの効率性を革新」

研究者たちは、大規模な設定で実施された実験において、合成画像のみで訓練されたモデルが、実際の画像で訓練されたモデルよりも優れていることを初めて示しました。 ¶ クレジット:Alex Shipps / MIT CSAIL、Midjourney AIイメージジェネレータ経由

マサチューセッツ工科大学(MIT)の研究者チームが示したところによれば、合成画像を用いて機械学習モデルを訓練することは、実際の画像を使用する従来の訓練方法よりも優れていることがわかりました。

この戦略は、「マルチポジティブ輪郭学習」として知られており、Stable Diffusionのようなテキストから画像への変換モデルを使用して、StableRepを用いて合成画像を生成します。

StableRepでは、生成モデル内の「ガイダンススケール」を調整し、合成画像の多様性と忠実度のバランスを取ることができます。

研究者たちはまた、言語の監督を追加したStableRep+を作成しました。彼らはStableRep+を2,000万枚の合成画像で訓練し、5000万枚の実際の画像で訓練されたCLIPモデルよりも効率的であることを確認しました。ただし、研究者たちは、テキストプロンプトの選択が完全にバイアスフリーではないことを認識しています。

MITのリージエ・ファンは、「最新のテキストから画像への変換モデルを使用することで、単一のテキスト入力から多様なビジュアルを得るために、過去に類を見ないほどの制御が可能になりました。これは、実世界の画像収集を超える効率性と多様性を持っています」と述べています。MITニュースからの引用 記事全文を見る

概要の著作権 © 2023 SmithBucklin、ワシントンD.C.、アメリカ

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

コンピュータサイエンス

空気圧アクチュエータは、ロボットにチーターのような加速力を与えます

南アフリカのケープタウン大学の研究者たちは、気圧アクチュエータを使用して、チーターのように加速し操縦する四足歩行ロボ...

機械学習

Amazon SageMakerとAmazon Rekognitionを使用して、画像内の車の位置を検出するためのコンピュータビジョンモデルを構築してトレーニングする

コンピュータビジョン(CV)は、機械学習(ML)とディープラーニングの最も一般的な応用の一つです使用例は、自動運転車、ソ...

AI研究

このAI研究は、CoDi-2を紹介します:インターリーブされた指示処理とマルチモーダルな出力生成の風景を変える画期的なマルチモーダル大規模言語モデルです

研究者たちは、UCバークレー、Microsoft Azure AI、Zoom、UNC-Chapel Hillによって開発されたCoDi-2 Multimodal Large Langua...

AIニュース

ハギングフェイスがSafeCoderを導入:エンタープライズ向けに構築されたコードアシスタントソリューション

コードアシスタントソリューションは、開発者がコードを書くときや編集するときに支援するツールやソフトウェアアプリケーシ...

AI研究

ジュネーブ大学の研究者は、多剤耐性(MDR)腸内細菌感染の入院リスクを予測するためのグラフベースの機械学習モデルを調査しています

マシンラーニングは、医療で非常に重要なツールとして登場し、業界のさまざまな側面を革新しています。その主な応用の一つは...

AIニュース

「二つの小さな言葉で偽の「事実」に立ち向かう」

研究者たちは、大規模言語モデル(LLM)の幻覚を減らす方法を開発しましたLLMのクエリに「によると」を含めることで