この人工知能による調査研究は、医療領域への大規模言語モデルの包括的な概要を提供します
人工知能による調査研究:医療領域における大規模言語モデルの包括的な概要提供
このコンテンツは購読者のみ対象です
自然言語処理(NLP)システムは、音声認識、メタファー処理、感情分析、情報抽出、機械翻訳など、さまざまなタスクにおいて、事前学習済み言語モデル(PLM)に大いに依存してきました。最近の進展により、PLMは急速に変化しており、新たな進展が自立型システムとしての機能を示しています。このアプローチでの重要な進歩は、OpenAIによるLarge Language Models(LLM)(例:GPT-4)の開発によって達成されました。これらのモデルは、NLPタスクだけでなく、生物学、化学、医学検査といった科目でも性能が向上しています。GoogleのMed-PaLM 2も、医療セクターに特化しており、医学的な質問データセットで「エキスパート」と同等の性能を獲得しています。
LLMは、数多くのアプリケーションの効果と効率を向上させることで、医療業界を革命する力を持っています。これらのモデルは、医学のアイデアと用語について深い理解を持っているため、医療の質問に対して洞察に富んだ分析や回答を提供することができます。患者との対話、臨床の意思決定支援、さらには医療画像の解釈にも役立つことがあります。LLMには、大量のトレーニングデータの必要性やそのデータ中の偏りの伝播といった制約もあります。
- このAI研究は、FireActを提案しますこれは、複数のタスクとエージェントの手法からの軌跡を使用して、言語モデルを微調整するための新しい人工知能の手法です
- アップルとCMUの研究者が新たなUI学習者を披露:連続機械学習を通じてアプリのアクセシビリティを革新
- 「トランスフォーマーは長い入力をどのように扱うのか?CMUとGoogleの研究者が新しいアプローチを発表(FIRE):相対位置エンコーディングのための機能的補間」
最近の研究では、研究チームがLLMの医療分野における能力について調査しました。PLMからLLMへの重要な進歩を理解するために、これら2つの言語モデルを対比することが必要です。PLMは基本的な構築ブロックですが、LLMはより広範な能力を持ち、医療の文脈で一貫したコンテキストに即した回答を生成することができます。PLMからLLMへの移行によって、モデルがイベントを分類または予測する差別的なAIアプローチから、言語ベースの回答を生成する生成的なAIアプローチにシフトしていることがわかります。この移行によって、モデル中心からデータ中心のアプローチへのシフトがより際立っています。
LLMの世界にはさまざまなモデルが存在し、それぞれ特定の専門性に適しています。医療業界向けに特別に設計された注目すべきモデルには、HuatuoGPT、Med-PaLM 2、Visual Med-Alpacaなどがあります。たとえば、HuatuoGPTでは積極的に患者を巻き込むために質問を行い、Visual Med-Alpacaでは画像専門家と協力して放射線画像の解釈などの職務をこなします。LLMの多様性により、さまざまな医療関連の問題に取り組むことができます。
ヘルスケアアプリケーションにおいてLLMのパフォーマンスは、トレーニングセット、技術、最適化戦略などの要素に大きく影響を受けます。本調査は、医療環境でLLMを作成および最適化するための技術的要素を探究しています。LLMの医療環境での使用には実習的な問題や倫理的な問題があります。LLMの使用にあたっては、公正さ、責任、透明性、倫理が確保されることが重要です。特に患者のケアが関わる場合、バイアスのない医療アプリケーションを提供し、倫理的なガイドラインに従い、回答について明確な正当化を行うことが求められます。
チームによる主な貢献は次のとおりです。
- PLMからLLMへの移行の途中経過を共有し、新たな進展についての最新情報を提供しました。
- LLMの医療業界でのトレーニング資料、評価ツール、データリソースの編成に焦点を当て、医学研究者が個別の要件に応じて最適なLLMを選択するのに役立ちました。
- 公平性、公正さ、透明性など、倫理的な問題に関して検討しました。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 大規模な言語モデルは本当に行動し思考できるのか?イリノイ大学アーバナ・シャンペーン校の研究者が意思決定の向上のためにLATSを導入
- 「どのようにして、1ビットのウェイトで大規模な言語モデルを効果的に圧縮できるのか?この人工知能の研究では、PB-LLMを提案しています:部分的にバイナリ化されたLLMの潜在能力を探索する」
- プリンストン大学とメタAIの研究者たちは、長い文脈を要約ノードの木に最初に処理する新しい方法、MemWalkerを導入しました
- マイクロソフトの研究者が「SpaceEvo」を紹介:現実世界のデバイスに対して超効率的で量子化されたニューラルネットワークを設計する画期的なゲームチェンジャー
- カルテックとETHチューリッヒの研究者が画期的な拡散モデルを導入:最先端のビジュアルタスクと異なるドメインへの適応を実現するためのテキストキャプションの活用
- メタ AI 研究者たちは、非侵襲的な脳記録から音声知覚のデコーディングを探求するための機械学習モデルを紹介します
- シャージャ大学の研究者たちは、アラビア語とその方言を自然言語処理に取り入れるための人工知能ソリューションを開発しました