このAI研究は、車両の後続振る舞いモデリングのための包括的なベンチマークデータセット「FollowNet」を紹介します

このAI研究は、美とファッションの分野に豊富な知識を持つ美容とファッションのエキスパートであり、しばしばそれらについての生き生きとした記事を書くAI研究者が、車両の後続振る舞いモデリングのための包括的なベンチマークデータセット「FollowNet」を紹介します

他の車に続くことは、最も一般的で基本的な運転行動です。他の車に安全に従うことは、衝突を減らし、交通の流れを予測しやすくします。ドライバーが道路上で他の車に従うとき、適切な車両追跡モデルは、この行動を数学的または計算的に表現します。

運転データの実世界での利用可能性と機械学習の進歩は、過去10年間にデータ駆動型の車両追従モデルのブームに大きく貢献しました。車両に従うためにデータに依存するモデルには、ニューラルネットワーク、再帰型ニューラルネットワーク、強化学習などがあります。ただし、次のようないくつかの制約もあります:

  • まず、車両追従モデルは、標準のデータ形式の不在のためにまだ十分に評価されていません。NGSIMやHighDなどの公開運転データセットが利用可能であるにもかかわらず、車両追従モデルの新規提案モデルのパフォーマンスを既存のものと比較するのは困難です。
  • 第二に、現在の研究の限られたデータセットでは、混合交通流における車両追従行動を正確に描写することは不可能です。自律型車両を考慮しない小規模なデータセットで車両追従行動をモデリングしているということが先行研究の主な焦点であり、これは人力および自動運転車両が道路を共有している時期に行われたものです。

これらの問題を解決し、標準的なデータセットを作成するために、香港科技大学、広東省統合通信キーラボ、同济大学、ワシントン大学の研究者らによる新しい研究によって、FollowNetというベンチマークが作成されました。彼らは一貫した基準を使用して、5つの公開データセットから車両追跡イベントを抽出し、ベンチマークを確立しました。研究者らはベンチマーク内で5つのベースラインの車両追従モデルを実行し、評価し、従来の手法とデータ駆動型の手法を包括しています。彼らは車両追従モデルの作成を容易にするために、一貫したデータ形式を使用してこのような行動の最初の基準を設定しました。さまざまなデータ構造やフレームワークの取り扱いは困難かもしれませんが、彼らの標準化された車両追従ベンチマークはそれを考慮に入れています。

ベンチマークを使って、GHR、IDM、NN、LSTM、DDPGの2つの従来型および3つのデータ駆動型の車両追従モデルがトレーニングおよび評価されます。HgihD53、Next Generation Simulation(NGSIM)54、Safety Pilot Model Deployment(SPMD)55、Waymo56、およびLyf57という5つの人気のある公開運転データセットは、提案されたベンチマークを構成する車両追従イベントを含んでいます。研究者らは複数のデータセットについて車両追従行動のパターンや基本的な統計情報を調査しました。結果は、一貫した評価指標を用いてベースラインモデルのパフォーマンスを評価することを示しています。特にWaymoとLyfのデータセットでは、車両追従の発生が混合交通状況であることが示されています。静止時間が90%以上のイベントは含まれていません。

データ駆動型のモデルがクラシックなモデルよりもスペーシングのMSEが低くなったとしても、衝突はまだ起こり得ます。衝突率がゼロで、スペーシングエラーが少ない車両追従モデルの開発は望ましいです。データ駆動型モデルを現実世界で実用的かつ安全に使用するために、衝突回避機能を組み込むことは有益です。提案されたベンチマークでは、すべての車両が一貫して似たような行動パターンを示すと考えられています。しかし現実的には、運転習慣はドライバーや車両、交通状況によって大きく異なることがあります。そのため、幅広い運転スタイル、行動、交通状況をカバーする適応可能なアルゴリズムと代表的なデータセットを作成することは、車両追従モデルに運転の異質性を含めるために不可欠です。

研究者らは、将来のデータセットが更なる性能と現実性を向上させるために、追加のフィーチャーを取り入れる必要があると提案しています。例えば、交通信号や道路の状況データを追加することで、より完全な道路環境の全体像が得られるかもしれません。さらに、アルゴリズムは、近くの車両やその活動に関するデータを統合すれば複雑な関係性を考慮し、より良い予測を提供することができます。これらの追加データソースを使用することで、将来のデータセットはより現実世界の運転シナリオを反映できるようになり、頑健かつ効果的な車両追従アルゴリズムの作成を可能にします。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more