このAI研究によって、写真-SLAMが発表されました:ポータブルデバイスでのリアルタイム写真写実的マッピングを向上させる
『AI研究によって実現、写真-SLAM:ポータブルデバイスでのリアルタイム写真写実的マッピングの革新』
コンピュータビジョンとロボット工学において、カメラによる同時位置推定と地図作成(SLAM)は、自律システムが自ら環境をナビゲートし理解することを目指す重要なトピックです。幾何学的マッピングは、従来のSLAMシステムの主な焦点であり、正確ながらも美的に基本的な環境表現を生成します。しかし、最近のニューラルレンダリングの進展により、SLAMプロセスに写真のようなリアルなイメージ再構成を取り入れることが可能であり、これによってロボットシステムの知覚能力が向上する可能性があります。
既存の手法は、暗黙的な表現に大きく依存しており、計算リソースに制約のあるデバイス上での展開には不向きですが、ニューラルレンダリングとSLAMの統合は有望な結果を生み出しています。たとえば、ESLAMはマルチスケールのコンパクトテンソルコンポーネントを使用し、Nice-SLAMは環境を反映した学習可能な特徴を持つ階層型グリッドを使用しています。その後、多数のレイサンプルの再構築損失を減らすことで、カメラ位置を推定し特徴を最大化するために協力します。最適化のプロセスは時間がかかるため、効果的な収束を保証するためにRGB-Dカメラや密な光流推定器、または単眼深度推定器など複数のソースから関連する深度情報を統合する必要があります。さらに、マルチレイヤーパーセプトロン(MLP)が暗黙的な特徴をデコードするため、最良の結果を得るためにレイサンプリングを正確に規格化するための境界領域を指定することが通常必要です。これにより、システムのスケーリングの可能性が制限されます。これらの制約から、SLAMリアルタイム探索と未知の領域でのマッピング能力を携帯プラットフォームを使用して達成することはできません。
本研究では、香港科技大学と中山大学の研究チームがPhoto-SLAMを提案しています。この画期的なフレームワークは、オンラインでフォトリアルなマッピングと正確な位置推定を実行し、従来の手法のスケーラビリティとコンピューティングリソースの制約を解決します。研究チームは、回転、スケーリング、密度、球面調和(SH)係数、およびORB特性を保持するポイントクラウドのハイパープリミティブマップを追跡します。ハイパープリミティブマップは、元の画像とレンダリングされた画像の間の損失を逆伝播することにより、対応するマッピングを学習し、因子グラフソルバを使用してトラッキングを最適化することを可能にします。3Dガウススプラッティングを使用して画像を生成します。3Dガウススプラッティングレンダラを導入することで、ビュー再構築のコストを下げることができますが、特に単眼の状況ではオンラインの増分マッピングの高品位なレンダリングを提供することはできません。さらに、ジオメトリベースの密度化技術とガウシアンピラミッド(GP)に基づいた学習手法を示唆し、密な深度情報に依存せずに高品質なマッピングを実現する方法を提案しています。
- ジュネーブ大学の研究者は、多剤耐性(MDR)腸内細菌感染の入院リスクを予測するためのグラフベースの機械学習モデルを調査しています
- 上海人工知能研究所とMITの研究チームが、階層的に制御された再帰ニューラルネットワーク(RNN)の開発を発表しましたこれは効率的な長期依存性モデリングにおける新たなフロンティアです
- 研究者たちは、アルゴリズムに「味覚」を教えることに成功しました
重要なことは、GP学習により、マルチレベルの特徴を段階的に獲得することが容易になり、システムのマッピング性能が大幅に向上します。研究チームは、RGB-Dカメラ、ステレオカメラ、単眼カメラによって撮影されたさまざまなデータセットを使用して、提案手法の効果を評価するための長期的な試行を行いました。この実験の結果は、Photo-SLAMがレンダリング速度、フォトリアリスティックなマッピング品質、および位置推定の効率において最先端の性能を達成していることを明確に示しています。さらに、Photo-SLAMシステムの組み込みデバイスでのリアルタイム動作は、有用なロボットアプリケーションの可能性を示しています。図1と図2は、Photo-SLAMの概要を示しています。
この仕事の主な成果は以下の通りです:
• 研究チームは、ハイパープリミティブマップと同時ローカライゼーションに基づいた初の写真のようなマッピングシステムを開発しました。この新しいフレームワークは、屋内および屋外の単眼、ステレオ、RGB-Dカメラと一緒に動作します。
• 研究チームは、ガウシアンピラミッド学習の使用を提案しました。これにより、モデルは効果的かつ迅速に多レベルの特徴を学習でき、高精度なマッピングが可能になります。このシステムは、埋め込みシステムでもリアルタイム速度で動作し、完全なC++およびCUDAの実装により最先端のパフォーマンスを実現しています。コードへの一般公開も行われます。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 「CMU研究者がDiffusion-TTAを発表:類まれなテスト時間適応のために生成的フィードバックで識別的AIモデルを高める」
- 「人間の活動認識におけるディープラーニング:このAI研究は、Raspberry PiとLSTMを使用した適応的なアプローチを導入し、位置に依存しない正確性を高めます」
- Google AIとテルアビブ大学の研究者は、テキストから画像への拡散モデルと専門のレンズジオメトリを組み合わせた人工知能フレームワークを提案しています画像のレンダリングに関して、これは画期的なものです
- このQualcomm AI ResearchのAIペーパーは、EDGIを公開しました:先進的なモデルベースの強化学習と効率的な計画のための画期的な不変拡散器
- 「Google DeepMind ResearchはSODAを紹介しました:表現学習のために設計された自己教師付き拡散モデル」
- 北京大学とマイクロソフトの研究者がCOLEを紹介:シンプルな意図プロンプトを高品質なグラフィックデザインに変換する効果的な階層生成フレームワーク
- 「UCバークレーの研究者たちは、スターリング-7Bを発表しました:AIフィードバックからの強化学習でトレーニングされたオープンな大規模言語モデル(LLM)です(RLAIF)」