「このAI研究は、グラフ上の大規模言語モデル(LLM)について包括的な概要を共有します」

「大規模言語モデル(LLM)の包括的な概要をグラフ上で共有するAI研究」

よく知られたLarge Language Models(LLMs)であるGPTやBERT、PaLM、LLaMAは、自然言語処理(NLP)と自然言語生成(NLG)においていくつかの大変な進歩をもたらしました。これらのモデルは大規模なテキストコーパスで事前学習され、質問応答やコンテンツ生成、要約など、複数のタスクで驚異的なパフォーマンスを発揮しています。

LLMsは平文のテキストを扱うことができることが証明されていますが、テキストデータがグラフ形式の構造情報とリンクされたアプリケーションを扱う必要性がますます高まっています。研究者たちは、LLMsの良好なテキストベースの推論力を活用して、マッチングサブグラフ、最短パス、接続推論などの基本的なグラフの推論タスクにLLMsをどのように適用できるかを研究しています。LLMsの統合に関連付けられているグラフベースのアプリケーションには、純粋なグラフ、テキスト豊かなグラフ、テキスト対応グラフの3つのタイプがあります。これらの機能とGNNとの相互作用に応じて、LLMsをタスク予測器、GNNの特徴エンコーダー、またはGNNとのアライナーとして扱うテクニックがあります。

LLMsはグラフベースのアプリケーションでますます人気が高まっていますが、LLMsとグラフの相互作用を調査する研究は非常に少ないです。最近の研究では、研究チームが大規模な言語モデルとグラフの統合に関連した状況と方法の体系的な概要を提案しています。目的は、テキスト豊かなグラフ、テキスト対応グラフ、純粋なグラフの3つの主要なカテゴリに可能な状況を整理することです。チームは、アライナー、エンコーダー、または予測器としてLLMsを使用する具体的な方法を共有しています。各戦略には利点と欠点があり、リリースされた研究の目的はこれらのさまざまなアプローチを対比することです。

チームは、LLMsをグラフ関連の活動で使用する利点を示すことで、これらの技術の実用的な応用に重点を置いています。チームは、これらの方法の適用と評価を支援するためのベンチマークデータセットとオープンソーススクリプトに関する情報を共有しています。結果は、この急速に発展している分野でのさらなる研究と創造性の必要性を強調して、可能な将来の研究トピックを概説しています。

チームは、彼らの主な貢献を以下のようにまとめています。

  1. チームは、言語モデルがグラフで使用される状況を体系的に分類することで貢献を果たしました。これらのシナリオは、テキスト豊かな、テキスト対応、純粋なグラフの3つのカテゴリに整理されています。この分類法は、さまざまな設定を理解するための枠組みを提供します。
  1. 言語モデルは、グラフのアプローチを用いて詳細に分析されました。評価は、さまざまなグラフ状況の代表的なモデルをまとめたもので、最も徹底的なものとなっています。
  1. 言語モデルをグラフに関連する研究に関連して、実世界の応用、オープンソースのコードベース、ベンチマークデータセットなど、多くの資料がキュレーションされています。
  1. 言語モデルをグラフでのさらなる研究のための6つの可能な方向が提案されており、基本的なアイデアを掘り下げています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

ランダムフォレストと欠損値

オンラインで見つかる過剰にクリーンされたデータセット以外に、欠損値はどこにでもあります実際、データセットが複雑で大き...

データサイエンス

「Skill-it」とは、言語モデルの理解とトレーニングのためのデータ駆動型スキルフレームワークです

大規模言語モデル(LM)は、ソースコードの作成、オリジナルの芸術作品の作成、人との対話など、非常に能力が高いです。モデ...

AIニュース

「IIT卒業生のAIによるカバーレターが皆を爆笑させる」

事件の風刺的な展開の中で、あるIIT(インド工科大学)の卒業生が人工知能を活用してカバーレターを作成しようとした結果、大...

機械学習

このGoogleのAI論文は、さまざまなデバイスで大規模な拡散モデルを実行するために画期的なレイテンシー数値を集めるための一連の最適化を提示しています

モデルのサイズと推論ワークロードは、画像生成のための大規模な拡散モデルが一般的になったために急激に増加しています。リ...

データサイエンス

Salesforce AIとコロンビア大学の研究者が、DialogStudioを導入しましたこれは、80の対話データセットの統一された多様なコレクションであり、元の情報を保持しています

会話AIは近年、著しい進化を遂げ、機械とユーザーの間で人間のような対話を可能にしています。この進歩を推進している重要な...

データサイエンス

「大規模言語モデル:現実世界のCXアプリケーションの包括的な分析」

大規模言語モデルを使用して、次世代の顧客体験を実現しよう:文脈に基づく応答、感情分析、パーソナライズされた推奨などを...