「このAI研究は、グラフ上の大規模言語モデル(LLM)について包括的な概要を共有します」

「大規模言語モデル(LLM)の包括的な概要をグラフ上で共有するAI研究」

よく知られたLarge Language Models(LLMs)であるGPTやBERT、PaLM、LLaMAは、自然言語処理(NLP)と自然言語生成(NLG)においていくつかの大変な進歩をもたらしました。これらのモデルは大規模なテキストコーパスで事前学習され、質問応答やコンテンツ生成、要約など、複数のタスクで驚異的なパフォーマンスを発揮しています。

LLMsは平文のテキストを扱うことができることが証明されていますが、テキストデータがグラフ形式の構造情報とリンクされたアプリケーションを扱う必要性がますます高まっています。研究者たちは、LLMsの良好なテキストベースの推論力を活用して、マッチングサブグラフ、最短パス、接続推論などの基本的なグラフの推論タスクにLLMsをどのように適用できるかを研究しています。LLMsの統合に関連付けられているグラフベースのアプリケーションには、純粋なグラフ、テキスト豊かなグラフ、テキスト対応グラフの3つのタイプがあります。これらの機能とGNNとの相互作用に応じて、LLMsをタスク予測器、GNNの特徴エンコーダー、またはGNNとのアライナーとして扱うテクニックがあります。

LLMsはグラフベースのアプリケーションでますます人気が高まっていますが、LLMsとグラフの相互作用を調査する研究は非常に少ないです。最近の研究では、研究チームが大規模な言語モデルとグラフの統合に関連した状況と方法の体系的な概要を提案しています。目的は、テキスト豊かなグラフ、テキスト対応グラフ、純粋なグラフの3つの主要なカテゴリに可能な状況を整理することです。チームは、アライナー、エンコーダー、または予測器としてLLMsを使用する具体的な方法を共有しています。各戦略には利点と欠点があり、リリースされた研究の目的はこれらのさまざまなアプローチを対比することです。

チームは、LLMsをグラフ関連の活動で使用する利点を示すことで、これらの技術の実用的な応用に重点を置いています。チームは、これらの方法の適用と評価を支援するためのベンチマークデータセットとオープンソーススクリプトに関する情報を共有しています。結果は、この急速に発展している分野でのさらなる研究と創造性の必要性を強調して、可能な将来の研究トピックを概説しています。

チームは、彼らの主な貢献を以下のようにまとめています。

  1. チームは、言語モデルがグラフで使用される状況を体系的に分類することで貢献を果たしました。これらのシナリオは、テキスト豊かな、テキスト対応、純粋なグラフの3つのカテゴリに整理されています。この分類法は、さまざまな設定を理解するための枠組みを提供します。
  1. 言語モデルは、グラフのアプローチを用いて詳細に分析されました。評価は、さまざまなグラフ状況の代表的なモデルをまとめたもので、最も徹底的なものとなっています。
  1. 言語モデルをグラフに関連する研究に関連して、実世界の応用、オープンソースのコードベース、ベンチマークデータセットなど、多くの資料がキュレーションされています。
  1. 言語モデルをグラフでのさらなる研究のための6つの可能な方向が提案されており、基本的なアイデアを掘り下げています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

AWSにおけるマルチモデルエンドポイントのためのCI/CD

生産用機械学習ソリューションの再トレーニングと展開を自動化することは、モデルが共変量シフトを考慮しながら、誤りや不要...

データサイエンス

機械学習のための高品質データセットの作成初心者ガイド

このチュートリアルでは、高品質なデータを取得し、機械学習の分類結果を改善する方法を紹介します

機械学習

「カスタムファインチューニングされた大規模言語モデルの安全性への深い潜入」

画期的な共同研究により、IBM Research、プリンストン大学、バージニア工科大学は大規模言語モデル(LLM)に関する重要な懸念...

機械学習

ミストラルAIは、MoE 8x7Bリリースによる言語モデルの画期的な進歩を発表します

パリに拠点を置くスタートアップMistral AIは、MoE 8x7Bという言語モデルを発表しました。Mistral LLMは、各々が70億のパラメ...

コンピュータサイエンス

2050年までに、ロボットはワールドカップの優勝者に勝利するか?

ロボカップの夢は、数世代のロボティストたちにインスピレーションを与えてきました

データサイエンス

5分であなたのStreamlitウェブアプリをデプロイしましょう

データサイエンティストが自分の作業をダッシュボードや動作するウェブアプリで紹介することが求められるようになりましたウ...