このAI研究では、BOFT(Foundationモデルの適応のための新しい一般ファインチューニングAIメソッド)を紹介します

『BOFT(Foundationモデルの適応のための新しい一般ファインチューニングAIメソッド)を紹介するAI研究』

人工知能の分野における最近の進展、特に大規模言語モデルの導入は、ほぼすべての領域でAIの道を開いています。ChatGPTやStable Diffusionなどの基本モデルは、顕著な汎化能力を持っています。しかし、これらのモデルをゼロからトレーニングすることは、パラメータの数の増加のために難しい課題です。

モデルの微調整アプローチは、追加の推論遅延を伴わないため簡単です。しかし、従来の微調整技術では、低い学習率を持つために、重み行列の関係情報を最適に維持することが難しいです。研究者は、オーソゴナル微調整(OFT)技術を研究しており、同じ直交行列を使用して同じ層のニューロンを変換することにより、微調整中にニューロン間のペアワイズ角度を維持します。この技術には良い潜在能力がありますが、同じ制限が生じるという問題があります。それは、直交行列の高次元性から生じる訓練可能なパラメータの膨大な数です。

この課題に対処するために、研究チームはオーソゴナルバタフライ(BOFT)というパラメータ効率の向上を可能にするユニークな最新の方法を紹介しました。Cooley-Tukey高速フーリエ変換技術におけるバタフライ構造からインスピレーションを受けて、BOFTは多数の因子化スパース行列と組み立てることで密な直交行列を生成します。直交行列をスパース行列の積として表現するためには、計算時間を空間と交換する必要があります。

研究チームは、これをグリッド構造のグラフ上の情報伝達問題と比較することで理解できると共有しており、表現力を保ちながら訓練可能なパラメータを制限するさまざまなスパース行列因子化技術を使用することが可能になります。BOFTは、Cooley-Tukeyのバタフライグラフに触発されており、その主な革新はバタフライ因子化プロセスです。

この因子化を利用することで、O(log d)のスパース行列の積で密な行列を生成することができます。各スパース行列において直交性を保証することで、BOFTはO(d log d)のパラメータで効率的な直交パラメータ化を実現し、オリジナルのOFTパラメータ化から大幅に削減します。BOFTは一般的な直交微調整フレームワークを提供し、OFTを包括します。

研究チームは、OFTのブロック対角構造とBOFTを比較し、効果的な訓練可能なパラメータを削減するためにBOFTとOFTの両方が直交行列にスパース性を追加することを示しました。しかし、ダウンストリームアプリケーションでは、BOFTのバタフライ構造によって、フル直交行列と単位行列の間でよりスムーズな補間が可能な、より小さな仮説クラスが提供されます。この構造的アプローチは、ローラの低ランク構造と比較することで、低ランクとスパース行列の両方がパラメータ効率を達成する構造化アプローチであることを強調するために行われました。

研究者たちは、主な貢献を以下のようにまとめています。

  1. ダウンストリームタスクのための大規模モデルの適合性を向上させるために、直交微調整のパラメータ効率の問題を研究しました。
  1. 情報伝達のための新しいフレームワークが紹介され、パラメータ効率の高い密な直交行列の構築の問題がグリッド構造グラフ内の課題として再構成されました。
  1. パラメータ効率の高い直交微調整手法であるオーソゴナルバタフライ(BOFT)が紹介されました。
  1. BOFTによる訓練可能なパラメータの劇的な削減を保ちながら、表現力とトレーニング安定性を維持するための行列因子化と理論的な説明が議論されました。
  1. BOFTは、適応アプリケーションにおいて最先端の技術を上回り、その優れたパラメータ効率と汎化能力を示しました。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

AWSの知的ドキュメント処理を生成AIで強化する

「データの分類、抽出、分析は、大量の文書を扱う組織にとって困難な課題です従来の文書処理ソリューションは手作業が必要で...

AIニュース

「合成イメージングがAIトレーニングの効率性を新たな基準に設定」

研究チームが、合成画像を使用して機械学習モデルをトレーニングすることが、実際の画像を使用した従来のトレーニング方法よ...

データサイエンス

衝撃的な現実:ChatGPTのデータ漏洩への脆弱性

最近の研究論文「ChatGPTからのトレーニングデータの抽出」は、広く使用されている言語モデルの驚くべき脆弱性を明らかにしま...

データサイエンス

「AIはほとんどのパスワードを1分以内に解読できますAI攻撃からパスワードを保護する方法」

人工知能(AI)は、次の技術革新の波をもたらしています。AIの能力に魅了される一方で、その潜在的なリスクへの懸念も高まっ...

機械学習

『ランチェーンでチェーンを使用するための包括的ガイド』

イントロダクション 言語処理の最前線に足を踏み入れてください!言語が人間とテクノロジーの間の重要なつながりである領域で...

データサイエンス

ジェネレーティブAIツールを使用する際にプライバシーを保護するための6つの手順

イントロダクション 生成型AIツールの出現は、興奮と懸念を引き起こしました。これらのツールは私たちの生活と仕事を革新する...