このAIの論文は、ディフュージョンモデルを向上させるためのDiffEncを発表します

美容とファッションのエキスパートとして、鮮やかで生き生きとした記事を書くことが多い

拡散モデルは、画像、音声、ビデオ、音楽などの多様な生成タスクで優れた性能を発揮するパワフルなモデルです。優れたビジュアルクオリティと密度推定により、画像生成において最先端のパフォーマンスを実現することができます。拡散モデルは、画像にランダムノイズを徐々に追加し、プロセスを逆に学習して所望の高品質な画像を生成するためのマルコフ連鎖を定義しています。

拡散モデルは階層的なフレームワークとして動作し、逐次的に生成される一連の潜在変数がお互いに依存し合います。拡散モデルのアーキテクチャには以下の制約があります:

  • データにノイズを導入するプロセスは簡単かつ固定されています。
  • 各層の隠れた変数は前のステップにのみ依存しています。
  • モデル内のすべてのステップで同じパラメータを共有しています。

上記の制約にもかかわらず、拡散モデルは非常にスケーラブルで柔軟です。この論文では、研究者のグループが柔軟性をさらに向上させるための新しいフレームワークであるDiffEnfを紹介しています。

従来のノイズの追加方法とは異なり、研究者たちは時系列的なエンコーダを導入し、拡散プロセスの平均値をパラメータ化しています。エンコーダは基本的には特定の時間でエンコードされた画像を予測します。さらに、このエンコーダは訓練フェーズのみで使用され、サンプリングプロセス中には使用されません。これらの2つの特性により、DiffEncはサンプリング時間に影響を与えることなく、従来の拡散モデルよりも柔軟性を高めることができます。

評価のために、研究者たちはCIFAR-10とMNISTという2つの人気データセットを用いて、異なるバージョンのDiffEncを標準VDM基準と比較しました。DiffEnc-32-4モデルは、以前の研究やVDMv-32モデルよりも低いビット/次元(BPD)の観点で優れたワークを示しています。これは、エンコーダがサンプリング中には使用されないにもかかわらず、エンコーダが拡散プロセスの改善に寄与していることを示しています。また、結果はDiffEnc-32-4の拡散損失の改善による合計損失の差が主な要因であることも示しており、エンコーダの拡散プロセスにおける役割が示されています。

研究者たちはまた、エンコーダのサイズを増やしてもVDMと比較して平均拡散損失に大きな改善が見られないことを観察しました。これは、有意な違いを実現するためには、より長いトレーニングが必要であり、エンコーダの機能を十分に活用するためにはより大きな拡散モデルが必要かもしれないという仮説です。

結果は、時間依存のエンコーダを追加することで拡散プロセスを改善することができることを示しています。エンコーダはサンプリング時間を増やさないものの、サンプリングプロセスは生成的対抗ネットワーク(GAN)と比較して依然として遅くなります。それにもかかわらず、この制約にもかかわらず、DiffEncは拡散モデルの柔軟性を向上させ、CIFAR-10データセットで最先端の尤度を達成することができます。さらに、研究者たちはこのフレームワークを潜在的な拡散、識別器ガイダンス、一貫性正則化などの他の既存の手法と組み合わせることで、学習された表現を改善し、さまざまな画像生成タスクへの新たな可能性を切り拓くことができると提案しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

AIがセキュリティを向上させる方法

AIはマルウェアの検出、サイバー脅威の特定と対応、機密データの保護、そして重要なインフラストラクチャのセキュリティ向上...

機械学習

「転移学習を探求しましょう...」(Ten'i gakushū o tankyū shimashou...)

転移学習については、多くの定義があります基本的には、事前学習済みモデルの知識を活用して新しい問題を解決することを指し...

AI研究

アマゾンの研究者がフォーチュナを紹介:ディープラーニングにおける不確実性量子化のためのAIライブラリ

人工知能と機械学習の最近の発展は、皆の生活をより容易にしてくれています。その信じられない能力により、AIとMLはあらゆる...

AI研究

「次世代ニューラルネットワーク:NeurIPSでの多くのAIの技術進歩をNVIDIA Researchが発表」

世界中の学術機関と協力して、NVIDIAの研究者は< a href=”https://www.voagi.com/ai-for-sustainable-banking-reduc...

コンピュータサイエンス

ジェイソン・アーボン:「100万年後、超強力なコンピュータは私たちの時代のテスターを尊重するでしょう」

「AIのテストにおける利用、やや公平でないマニュアルQA vs. 自動化QAの葛藤、指数関数的に発展する新しい技術によるテスター...

データサイエンス

「タイムシリーズの拡張」

「拡張機能は、コンピュータビジョンパイプラインの領域において欠かせない要素となってきましたしかし、タイムシリーズなど...