このAI論文では、既知のカメラパラメータなしで新しい視点合成を行うために、COLMAP-Free 3D Gaussian Splatting(CF3DGS)を提案しています

「既知のカメラパラメータなしで新しい視点合成を実現するための提案 COLMAP-Free 3D Gaussian Splatting(CF3DGS)」

ニューラルレンダリングの進歩により、シーンの再構築や新しい視点の生成において重要なブレイクスルーがもたらされました。しかし、その効果はカメラの姿勢の正確な予備計算に大きく依存します。この問題を最小化するために、事前計算されたカメラの姿勢がないNeural Radiance Fields(NeRFs)を訓練するためにさまざまな取り組みが行われています。しかし、NeRFsの暗黙的な表現は、3Dの構造とカメラの姿勢を同時に最適化するのが困難です。

UCサンディエゴ、NVIDIA、UCバークレーの研究者らは、COLMAP-Free 3D Gaussian Splatting(CF-3DGS)を導入しました。これは、ビデオの時間的な連続性と明示的なポイントクラウド表現の2つの重要な要素を高めています。すべてのフレームを一度に最適化するのではなく、CF-3DGSはカメラが移動するにつれてシーンの3Dガウスを連続的な形で「成長させる」一つの構造を構築します。CF-3DGSは各フレームに対してローカルな3Dガウスセットを抽出し、全体のシーンのグローバルな3Dガウスセットを維持します。

https://arxiv.org/abs/2312.07504

リアルな画像を視点から生成するためにさまざまな3Dシーン表現が使用されており、平面、メッシュ、ポイントクラウド、マルチプレーンイメージなどが含まれます。NeRFs(Neural Radiance Fields)は、その写真のようなリアルなレンダリング能力のために、この分野で注目を集めています。3DGS(3D Gaussian Splatting)メソッドは、純粋な明示的な表現と微分を利用したポイントベースのスプラッティング方法を使用して、ビューのリアルタイムレンダリングを可能にします。

CF-3DGSは既知のカメラパラメータを必要としないで合成ビューを実現します。それは3D Gaussian Splatting(3DGS)とカメラの姿勢を同時に最適化します。近くのフレームから相対カメラ姿勢を推定するためにローカルな3DGSメソッドを使用し、未観測のビューから3Dガウスを進行的に展開するためにグローバルな3DGSプロセスを使用しています。CF-3DGSは、明示的なポイントクラウドを使用してシーンを表現し、3DGSの機能とビデオストリームに固有の連続性を活用します。このアプローチは、入力フレームを順次処理し、3Dガウスを進行的に展開してシーンを再構築します。この手法により、トレーニングと推論の速度が高速化されます。

https://arxiv.org/abs/2312.07504

CF-3DGSメソッドは、先行の最先端技術よりもポーズ推定の耐性が高く、新規ビューの合成品質も優れています。この手法は、より複雑で挑戦的なカメラの動きを示すCO3Dビデオで検証され、ビューの合成品質においてNope-NeRFメソッドを上回る結果を示しました。このアプローチは、CO3D V2データセットにおいてすべてのメトリックでNope-NeRFeをしのぎ、特に複雑なカメラの動きがあるシナリオでのカメラの姿勢推定の耐性と精度を示しています。

まとめると、CF-3DGSはビデオの時間的な連続性と明示的なポイントクラウド表現を利用してビューを効果的かつ堅牢に合成する方法です。この方法は、主にビデオストリームや順序付けられた画像コレクションに適しており、Structure-from-Motion(SfM)前処理の必要はありません。また、非順序の画像コレクションに対応するための将来の拡張の可能性もあります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

シャージャ大学の研究者たちは、アラビア語とその方言を自然言語処理に取り入れるための人工知能ソリューションを開発しました

アラビア語は4億2200万人以上の国民の公用語であり、世界で5番目に広く使用されています。しかし、自然言語処理ではほとんど...

AIニュース

「EUのAI法はAI規制のグローバルスタンダードを設定し、アジアの国々は慎重な姿勢を維持する」

欧州連合は、著作権保護やAI生成コンテンツの開示に関する規則を含むAI法案を提案しており、人工知能(AI)の規制において先...

機械学習

「NVIDIAのグレース・ホッパー・スーパーチップがMLPerfの推論ベンチマークを席巻する」

MLPerf業界ベンチマークに初登場したNVIDIA GH200 Grace Hopperスーパーチップは、すべてのデータセンターインファレンステス...

機械学習

Japanese AI規制- 仮定はありませんか?それとも何もしない?

バイアスは、任意のモデルに関して規制の対象となる考慮事項の一つです生成AIは、この考えを再び主流に押し上げました私の経...

機械学習

最初のネイティブLLMは電気通信業界に最適化されました

キネティカのSQL-GPT for Telecomは、ネットワークのパフォーマンスと顧客体験を最適化するためのより高速な分析と対応を可能...

データサイエンス

人工知能は人間を置き換えるのか?

はじめに 皆さんはご存知のとおり、AIは飛躍的な進歩を遂げ、科学者や一般の人々の想像をとらえています。ニュースやソーシャ...