このAI論文では、コンピュータビジョンの基盤について包括的な分析を紹介し、事前学習モデルの強みと弱点を明らかにします

『このAI論文では、コンピュータビジョンの基盤に関する包括的な分析を紹介し、事前学習モデルの長所と短所を明らかにします』

コンピュータビジョンにおいて、バックボーンは多くのディープラーニングモデルの基本的なコンポーネントです。分類、検出、セグメンテーションなどの下流の処理は、バックボーンによって抽出された特徴に依存しています。ここ数年で、新しい事前トレーニング戦略とバックボーンのアーキテクチャが急激に増えています。その結果、実践者は自分の特定の活動およびデータセットに最適なバックボーンを選ぶことに課題を抱えています。

バックボーンの戦い(BoB)は、多くの人気のある公開された事前トレーニングチェックポイントとランダムに初期化されたベースラインをさまざまな下流タスクで比較する大規模なベンチマークです。ニューヨーク大学、ジョンズホプキンス大学、メリーランド大学、ジョージア工科大学、Inria、Meta AI Researchの研究者が開発しました。BoBの調査結果は、さまざまなバックボーンのトポロジーと事前トレーニング戦略の相対的な利点を明らかにします。

この調査では、以下のような興味深い結果が得られました:

  • 事前トレーニングされた教師あり畳み込みネットワークは、通常、トランスフォーマーよりも優れたパフォーマンスを示します。これは、教師あり畳み込みネットワークは容易にアクセス可能で、大規模なデータセットでトレーニングされるためです。一方、同じサイズのデータセット間で結果を比較すると、自己教師ありモデルのほうが教師ありの類似物よりも優れたパフォーマンスを示します。
  • CNNに比べて、ViTはパラメータ数や事前トレーニングデータの量に対してより敏感です。これは、ViTのトレーニングにはCNNのトレーニングよりも多くのデータと処理能力が必要になる可能性があることを示しています。バックボーンのアーキテクチャを決定する前に、精度、計算コスト、データの利用可能性に対するトレードオフを検討する必要があります。
  • タスクパフォーマンス間の相関度は高いです。最良のBoBバックボーンはさまざまなシナリオで優れた機能を発揮します。
  • エンドツーエンドの調整は、密な予測ジョブにおいてはCNNよりもトランスフォーマーに効果があります。これは、トランスフォーマーがCNNよりもタスクおよびデータセットに依存する可能性があることを示しています。
  • CLIPモデルと他の有望な先進的なアーキテクチャを使用したビジョン言語モデリング。CLIPの事前トレーニングは、ImageNet-21kでトレーニングされたバックボーンと比較しても優れています。このデータは、ビジョン言語の事前トレーニングがコンピュータビジョンのタスクの結果を改善することができることを示しています。著者は、CLIPを介して利用可能な事前トレーニング済みバックボーンを調査することを専門家に勧めています。

BoBにはコンピュータビジョンフレームワークの最先端がマッピングされています。ただし、この分野は新しいアーキテクチャと事前トレーニング技術の進歩が継続しているため、パフォーマンスを向上させるために新しいインフラストラクチャを常に評価・比較し、見つける方法を見つけることが重要だとチームは考えています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「創発的AIの倫理的なフロンティア:導入と重要性」

イントロダクション 生成AIは、コンテンツの創造、模倣、強化という顕著な能力を持つことから、無類の可能性と複雑な倫理的ジ...

データサイエンス

データサイエンスへのゲートの解除:GATE 2024 in DS&AIの究極の学習ガイド

イントロダクション Graduate Aptitude Test in Engineering(GATE)は、インドで行われる大学院入学試験です。この試験は主...

データサイエンス

「データサイエンスプロジェクトを変革する:YAMLファイルに変数を保存する利点を見つけよう」

このブログ投稿では、データサイエンスプロジェクトで変数、パラメータ、ハイパーパラメータを保存するための中心的なリポジ...

機械学習

「生成AIをめぐる旅」

私の豊富な経験に深く踏み込んで、全力でGenerative AIを受け入れ、あなたが利益を得るために活用できる貴重な洞察と知識を得...

機械学習

ONNXモデル | オープンニューラルネットワークエクスチェンジ

はじめに ONNX(Open Neural Network Exchange)は、深層学習モデルの表現を容易にする標準化されたフォーマットとして広く認...

機械学習

「LoRAアダプターにダイブ」

「大規模言語モデル(LLM)は世界中で大流行しています過去の1年間では、彼らができることにおいて莫大な進歩を目撃してきま...